天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

交通工程邊坡在振動(dòng)力作用下行為特征研究

發(fā)布時(shí)間:2018-04-27 03:42

  本文選題:工程邊坡 + 變形破壞機(jī)制; 參考:《西南交通大學(xué)》2013年博士論文


【摘要】:交通工程邊坡在地震作用下的行為特征研究,是近年來(lái)研究的熱點(diǎn)問(wèn)題。隨著國(guó)家工程建設(shè)的投入,我國(guó)大量線路工程將會(huì)不可避免的穿越地震活躍區(qū),科研人員將會(huì)遇到大量復(fù)雜邊坡問(wèn)題,而邊坡問(wèn)題將會(huì)伴隨著工程建設(shè)的進(jìn)行而變得日益突出。本學(xué)位論文在全面研究現(xiàn)代交通線路工程的各類邊坡破壞模式的基礎(chǔ)上,利用室內(nèi)物理模型試驗(yàn)和數(shù)值模擬算等手段開展了邊坡工程地質(zhì)問(wèn)題動(dòng)力學(xué)的理論研究,為交通工程邊坡治理防護(hù)和交通工程邊坡地質(zhì)災(zāi)害預(yù)測(cè)評(píng)價(jià)提供了動(dòng)力學(xué)理論依據(jù)。主要研究成果如下: (1)按照機(jī)械設(shè)計(jì)原理和結(jié)構(gòu)動(dòng)力學(xué)原理,設(shè)計(jì)了二維單向振動(dòng)試驗(yàn)臺(tái)。利用位移傳感器和動(dòng)態(tài)采集系統(tǒng)對(duì)模型箱的位移時(shí)程曲線進(jìn)行了采集,并且通過(guò)結(jié)構(gòu)動(dòng)力學(xué)理論計(jì)算,獲取了理想狀態(tài)下單向振動(dòng)的位移時(shí)程曲線,通過(guò)兩條曲線對(duì)比發(fā)現(xiàn),振動(dòng)試驗(yàn)臺(tái)整體性能穩(wěn)定,能夠滿足小型荷載的振動(dòng)試驗(yàn)。 (2)邊坡坡面形態(tài)對(duì)邊坡的變形破壞有著直接的影響;凸面邊坡由于滑動(dòng)體質(zhì)量大,所以在振動(dòng)力施加時(shí)能夠瞬問(wèn)發(fā)生整體的變形破壞,而凹面邊坡由于滑體質(zhì)量較小,在振動(dòng)力作用下容易造成滑體的分段下滑,位于滑體下部的塊體先行下滑,進(jìn)而帶動(dòng)整個(gè)滑體的滑動(dòng)破壞,由此造成的宏觀現(xiàn)象是凹面邊坡坡面的裂隙要早于邊坡坡頂?shù)牧严懂a(chǎn)生,而凸面邊坡則與此相反。凹凸組合面邊坡的變形破壞受坡面上凸起部分的影響。 (3)邊坡的變形破壞程度以及滑動(dòng)面傾角與邊坡坡面的凹凸程度直接相關(guān);邊坡凹陷或凸出程度越強(qiáng)烈的邊坡,振動(dòng)試驗(yàn)結(jié)束后其坡頂剩余的部分就越少;同時(shí)分析發(fā)現(xiàn),滑動(dòng)面滑床傾角隨著邊坡坡面凹陷或者凸出程度的減緩而逐漸增大。 (4)邊坡坡面形態(tài)對(duì)坡面加速度分布有直接影響;邊坡加速度放大系數(shù)在坡而凹陷和凸起區(qū)域達(dá)到局部最大,并且逐步向外減小,在同等情況下,凸而坡坡面的加速度放大效應(yīng)要強(qiáng)于凹面坡坡面放大效應(yīng)。在凹凸組合面邊坡中,加速度放大效應(yīng)也在邊坡坡面凹陷處和凸起處達(dá)到最大。加速度在邊坡內(nèi)部都有隨著坡高的增高而增高的趨勢(shì),而且處于同一高程的邊坡坡面放大效應(yīng)趨勢(shì)要大于邊坡內(nèi)部,但不同坡面形態(tài)邊坡坡體內(nèi)部加速度分布并未出現(xiàn)不同規(guī)律,說(shuō)明邊坡坡面形態(tài)對(duì)邊坡內(nèi)部加速度的分布影響較小。 (5)通過(guò)對(duì)層狀巖石邊坡物理模型試驗(yàn)發(fā)現(xiàn),受結(jié)構(gòu)面的影響,順層模型邊坡的變形破壞主要是沿著固定層面的滑動(dòng)破壞,反傾向模型邊坡的變形破壞主要是以崩塌體的形式破壞。 (6)高程位置較高的隧道口由于滑體將其包含其中而容易造成隧道口的整體破壞,而高程較低的隧道口由于滑塌體堆積而容易造成隧道洞口堵塞。 (7)結(jié)構(gòu)面參數(shù)對(duì)邊坡動(dòng)力響應(yīng)規(guī)律的影響較大;結(jié)構(gòu)面剛度較小的邊坡下部坡體的三量峰值較小,而上部坡體三量峰值較大;結(jié)構(gòu)面越靠近邊坡坡頂,結(jié)構(gòu)面上部坡體的三量放大系數(shù)就越高;隨著結(jié)構(gòu)面傾角的增加,順層結(jié)構(gòu)面邊坡加速度放大系數(shù)隨之增大,反傾向結(jié)構(gòu)面邊坡加速度放大系數(shù)隨之減小,順層結(jié)構(gòu)面邊坡加速度放大系數(shù)整體大于反傾向結(jié)構(gòu)面邊坡加速度放大系數(shù);結(jié)構(gòu)面厚度較小的邊坡其動(dòng)力響應(yīng)較為強(qiáng)烈,結(jié)構(gòu)面厚度較大的邊坡動(dòng)力響應(yīng)較弱;不同結(jié)構(gòu)面連通率的邊坡,加速度峰值的差異較為明顯,在結(jié)構(gòu)面位置處,連通率較大的結(jié)構(gòu)面放大效應(yīng)較強(qiáng)。 (8)通過(guò)總結(jié)太平隧道出口邊坡工程地震安全性分析發(fā)現(xiàn),太平隧道出口邊坡受結(jié)構(gòu)面的影響較大,在地震來(lái)臨時(shí),結(jié)構(gòu)面切割塊體會(huì)受到拉張剪切應(yīng)力作用而發(fā)生整體和單個(gè)塊體的下滑,但是由于隧道洞口位置適中,滑體滑動(dòng)面位于隧道洞口以上,并且滑體滑落后不會(huì)出現(xiàn)堵塞洞口的現(xiàn)象,這一規(guī)律給隧道出口邊坡震后的迅速通車提供了可貴的先前條件。整體而言,太平隧道出口邊坡選址較為可觀。
[Abstract]:The research on the behavior characteristics of traffic engineering slope under the earthquake action is a hot issue in recent years. With the investment of national engineering construction, a large number of line projects in China will inevitably cross the active area of the earthquake, and the researchers will encounter a large number of complicated slope problems, and the slope problem will be accompanied by the construction of the project. On the basis of all kinds of slope failure modes of modern traffic line engineering, this dissertation has carried out the theoretical study of the dynamics of slope engineering geology by means of indoor physical model test and numerical simulation, for the prevention and protection of the slope of the traffic engineering slope and the prediction of the geological disaster of the slope of the traffic engineering. The evaluation provides a theoretical basis for dynamics. The main research results are as follows:
(1) according to the principle of mechanical design and the principle of structural dynamics, a two-dimensional unidirectional vibration test rig is designed. The displacement time history curve of the model box is collected by the displacement sensor and the dynamic acquisition system, and the displacement time history curve of the unidirectional vibration under the ideal state is obtained by the structure dynamics theory, and the two curve pairs are used. It is found that the overall performance of the vibration test stand is stable, and it can meet the vibration test of small load.
(2) the slope surface shape has a direct influence on the deformation and failure of the slope; because the mass of the sliding body is large, the convex side slope can instantly ask for the whole deformation and failure when the vibration force is added, while the concave slope is easy to make the slide block slide under the action of the vibration force, and the block in the lower part of the slide is first. The sliding failure of the whole slide will lead to the sliding failure of the whole body, and the macroscopic phenomenon is that the crack of the concave slope surface is earlier than the crack in the top of the slope, while the convex side slope is opposite to this. The deformation and failure of the concave and convex side slope is affected by the convex part on the slope.
(3) the degree of deformation and failure of the slope and the dip angle of the sliding surface are directly related to the degree of the concave and convex of the slope, and the more strong slope of the slope, the more the remaining part of the slope is on the top of the slope after the end of the vibration test. At the same time, it is found that the dip angle of sliding surface slide with the slope of the slope or the degree of protruding slows down gradually. Enlarge.
(4) the slope surface morphology has a direct influence on the acceleration distribution of the slope; the acceleration amplification factor of slope acceleration reaches a local maximum in the slope and the concave and convex regions, and gradually decreases outward. Under the same circumstances, the acceleration amplification effect of the convex and sloping slopes is stronger than the magnification effect of the concave slope surface. The large effect also reaches the maximum in the slope and the protruding. The acceleration is increasing with the increase of slope height, and the trend of amplification effect on the same elevation is larger than that in the slope, but the distribution of the acceleration distribution in the slope of different slope forms does not appear in different laws, indicating the side of the slope. The slope surface morphology has little effect on the acceleration distribution inside the slope.
(5) through the physical model test of the layered rock slope, it is found that the deformation and failure of the bedding model slope is mainly along the fixed plane, and the deformation and failure of the anti tendency model slope is mainly destroyed by the form of the collapse.
(6) the tunnel mouth is prone to damage the tunnel entrance due to the inclusion of the slide body in the tunnel with high elevation position, and the lower height of the tunnel is likely to cause the tunnel opening to be blocked due to the accumulation of the slump.
(7) the structural plane parameters have great influence on the dynamic response law of the slope; the three peak value of the lower slope with the smaller structural surface is smaller, while the three peak value of the upper slope is larger; the closer to the top of the slope, the more the three magnification coefficient of the upper slope of the structure surface is higher; with the increase of the structure surface angle, the bedding structure side edge is increased. The amplification coefficient of slope acceleration increases, and the acceleration magnification coefficient of the side slope decreases, and the acceleration magnification factor of the slope acceleration is larger than that of the reverse inclined structural side slope; the dynamic response of the slope with smaller structural surface thickness is stronger, and the dynamic response of the slope with a larger structural surface thickness The difference of acceleration peak value between slopes with different structural plane connectivity is more obvious. At the location of structural plane, the enlargement effect of structural plane with larger connectivity is stronger.
(8) through the analysis of the seismic safety of the exit slope engineering of the Taiping tunnel, it is found that the influence of the structural plane on the exit slope of the Taiping tunnel is larger. When the earthquake comes, the structure face cutting block is subjected to the tension and shear stress, which occurs as a whole and a single block, but it is due to the moderate position of the tunnel hole, and the sliding surface of the slide is located in the tunnel. There is no phenomenon of blocking the hole after the slide of the tunnel, and this rule provides a valuable prior condition for the rapid transit of the tunnel exit slope after the earthquake. In general, the location of the exit slope of the Taiping tunnel is relatively considerable.

【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類號(hào)】:U213.13;U416.14;P642.2

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 潘旦光;樓夢(mèng)麟;;河谷地形對(duì)土層地震反應(yīng)的影響[J];北京科技大學(xué)學(xué)報(bào);2008年11期

2 劉云鵬;黃潤(rùn)秋;鄧輝;;反傾板裂巖體邊坡振動(dòng)物理模擬試驗(yàn)研究[J];成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期

3 程國(guó)偉;趙雪勝;李玲;;基于擬靜力法的加筋邊坡地震穩(wěn)定性分析[J];長(zhǎng)江大學(xué)學(xué)報(bào)(自然科學(xué)版)理工卷;2009年04期

4 景立平;姚運(yùn)生;鄭志華;;飽和粉土液化特性的大型振動(dòng)臺(tái)模型試驗(yàn)研究[J];地震工程與工程振動(dòng);2007年06期

5 鄒威;許強(qiáng);劉漢香;陳龍;王龍;;強(qiáng)震作用下層狀巖質(zhì)斜坡破壞的大型振動(dòng)臺(tái)試驗(yàn)研究[J];地震工程與工程振動(dòng);2011年04期

6 劉漢香;許強(qiáng);范宣梅;;地震動(dòng)參數(shù)對(duì)斜坡加速度動(dòng)力響應(yīng)規(guī)律的影響[J];地震工程與工程振動(dòng);2012年02期

7 陳孝兵;李渝生;趙小平;;底摩擦重力試驗(yàn)在傾倒變形巖體穩(wěn)定性研究中的應(yīng)用[J];地學(xué)前緣;2008年02期

8 張登項(xiàng);許強(qiáng);;基于底摩擦試驗(yàn)的錦屏一級(jí)水電站左岸巖石高邊坡變形機(jī)制研究[J];地質(zhì)災(zāi)害與環(huán)境保護(hù);2008年01期

9 王思敬 ,張菊明;巖體結(jié)構(gòu)穩(wěn)定性的塊體力學(xué)分析[J];地質(zhì)科學(xué);1980年01期

10 王思敬,張菊明;邊坡巖體滑動(dòng)穩(wěn)定的動(dòng)力學(xué)分析[J];地質(zhì)科學(xué);1982年02期

相關(guān)博士學(xué)位論文 前1條

1 羅永紅;地震作用下復(fù)雜斜坡響應(yīng)規(guī)律研究[D];成都理工大學(xué);2011年



本文編號(hào):1809051

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1809051.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶2914c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com