深埋隧洞開(kāi)挖損傷區(qū)的演化與形成機(jī)制研究
本文選題:深部 + 隧洞; 參考:《東北大學(xué)》2013年博士論文
【摘要】:深埋隧洞開(kāi)挖圍巖損傷區(qū)的演化與形成一直以來(lái)是巖石力學(xué)、實(shí)驗(yàn)力學(xué)、損傷力學(xué)、斷裂力學(xué)與構(gòu)造地質(zhì)等多學(xué)科互相交叉而復(fù)雜的科學(xué)問(wèn)題。隨著巖石工程不斷向縱深發(fā)展,地質(zhì)災(zāi)害頻發(fā),開(kāi)展高應(yīng)力下深部地質(zhì)災(zāi)害孕育機(jī)制的研究備受關(guān)注,而地質(zhì)災(zāi)害的孕育伴隨著圍巖的損傷演化,特別是深部巖體開(kāi)挖卸荷條件下巖石的宏細(xì)觀損傷演化規(guī)律,大型巖體圍巖損傷區(qū)的綜合原位測(cè)試方法,巖體埋深、隧洞尺寸、開(kāi)挖方式、開(kāi)挖速率等因素對(duì)開(kāi)挖損傷區(qū)形成的影響以及演化機(jī)制、巖體損傷的預(yù)測(cè)與支護(hù)時(shí)間的確定已成為深部地下工程開(kāi)挖中待解決的關(guān)鍵性問(wèn)題。基于此,本文遵循從現(xiàn)象到本質(zhì),從局部到整體,從細(xì)觀到宏觀,從原位試驗(yàn)到數(shù)值分析的研究路線,分析鉆爆法開(kāi)挖和TBM開(kāi)挖方式下深部巖體損傷破壞特征、動(dòng)態(tài)響應(yīng)規(guī)律和形成機(jī)制,開(kāi)展的主要研究工作如下:(1)針對(duì)深埋隧洞開(kāi)挖損傷區(qū)的測(cè)試,提出了基于開(kāi)挖損傷區(qū)彈性波測(cè)試、數(shù)字鉆孔攝像、滑動(dòng)測(cè)微計(jì)變形測(cè)試、微震和聲發(fā)射微破裂信號(hào)定位等優(yōu)勢(shì)互補(bǔ)的原位試驗(yàn)綜合測(cè)試方法,闡釋了開(kāi)挖損傷區(qū)的測(cè)試原理,給出了試驗(yàn)場(chǎng)址的選擇原則,試驗(yàn)平臺(tái)的搭建方法,鉆孔的布置依據(jù),測(cè)試試驗(yàn)流程,以及試驗(yàn)設(shè)備的安裝調(diào)試和數(shù)據(jù)處理方法,彌補(bǔ)了單一測(cè)試方法不能保證測(cè)試結(jié)果的有效性,施工方式的多樣性,以及深部復(fù)雜巖體力學(xué)信息響應(yīng)的完備性,并以錦屏二級(jí)水電站深埋試驗(yàn)洞開(kāi)挖損傷區(qū)的測(cè)試試驗(yàn)為實(shí)例進(jìn)行了原位試驗(yàn)設(shè)計(jì)。(2)巖芯餅化的形成是深部巖體局部應(yīng)力解除下巖石的損傷演化過(guò)程。在總結(jié)巖芯餅化宏觀斷口形貌類(lèi)型的基礎(chǔ)上,給出了巖芯餅化數(shù)量,餅化巖芯厚度沿鉆孔方向的分布規(guī)律,進(jìn)一步分析了巖體埋深、地質(zhì)結(jié)構(gòu)、開(kāi)挖損傷、鉆孔直徑大小和方向,以及鉆進(jìn)速度等因素對(duì)巖芯餅化的影響。通過(guò)對(duì)不同直徑、不同厚度、不同凹凸面和不同位置的餅化巖芯斷口進(jìn)行SEM電鏡掃描,分析了巖芯餅化的細(xì)觀力學(xué)機(jī)制。(3)針對(duì)鉆爆法開(kāi)挖方式下深埋隧洞開(kāi)挖損傷區(qū)的演化與形成機(jī)制,在了解爆破破巖機(jī)理的基礎(chǔ)上,基于深埋科研試驗(yàn)洞的開(kāi)挖,總結(jié)了鉆爆法開(kāi)挖洞壁損傷破壞模式及成因?紤]不同埋深、隧洞尺寸和開(kāi)挖方式,通過(guò)數(shù)字鉆孔攝像技術(shù)手段,分析了巖體損傷裂隙特征,裂隙產(chǎn)狀開(kāi)挖前后的變化規(guī)律,裂隙寬度隨開(kāi)挖進(jìn)程和時(shí)間的演化規(guī)律,以及新生裂隙沿鉆孔軸向的分布規(guī)律。通過(guò)聲波測(cè)試,得到不同時(shí)間下巖體波速沿鉆孔方向分布,并給出孔底段巖體平均波速隨掌子面的變化關(guān)系。通過(guò)滑動(dòng)測(cè)微計(jì)變形測(cè)試,給出了巖體變形隨開(kāi)挖時(shí)間和進(jìn)尺的變化關(guān)系。通過(guò)微震監(jiān)測(cè),得到微震時(shí)間、能量指數(shù)和視體積隨時(shí)間的變化關(guān)系,以及微震事件隨掌子面推進(jìn)的演化規(guī)律。給出了基于以上信息的分析思路,形成了鉆爆法開(kāi)挖方式下開(kāi)挖損傷區(qū)的演化與形成機(jī)制,并分別給出掌子面對(duì)其在隧洞軸向與徑向影響范圍,以及時(shí)間影響效應(yīng),為深埋隧洞鉆爆法開(kāi)挖支護(hù)設(shè)計(jì)提供建議。(4)針對(duì)TBM開(kāi)挖方式下深埋隧洞開(kāi)挖損傷區(qū)的演化與形成機(jī)制,在了解TBM破巖機(jī)理的基礎(chǔ)上,基于深埋科研試驗(yàn)洞的開(kāi)挖,通過(guò)數(shù)字鉆孔攝像測(cè)試,分析了原巖巖體結(jié)構(gòu)特征,開(kāi)挖過(guò)程巖體裂隙損傷特征,以及新生裂隙產(chǎn)狀與隧洞軸向的關(guān)系,著重分析了裂隙寬度隨開(kāi)挖進(jìn)程和時(shí)間的演化規(guī)律。通過(guò)聲發(fā)射試驗(yàn),得到聲發(fā)射事件數(shù)和事件能量隨掌子面推進(jìn)在隧洞徑向和軸向方向的演化規(guī)律。通過(guò)多個(gè)鉆孔單孔聲波測(cè)試,得到不同鉆孔的損傷深度。綜合以上信息,結(jié)合圍巖應(yīng)力狀態(tài)和應(yīng)力應(yīng)變曲線,研究了TBM開(kāi)挖方式下開(kāi)挖損傷區(qū)的演化與形成機(jī)制,并分別給出TBM開(kāi)挖對(duì)隧洞軸向與徑向的影響范圍,以及時(shí)間效應(yīng),為深埋隧洞TBM法開(kāi)挖支護(hù)設(shè)計(jì)提供建議。(5)基于數(shù)值模擬手段分析了圍壓對(duì)隧洞初始損傷和臨界破壞狀態(tài)的影響,以及隧洞尺寸對(duì)圍巖變形的影響;并利用原位試驗(yàn)和其它測(cè)試結(jié)果進(jìn)行圍巖參數(shù)反演,應(yīng)用損傷劣化本構(gòu)模型,建立深埋隧洞數(shù)值計(jì)算模型,對(duì)比分析數(shù)值模擬結(jié)果與現(xiàn)場(chǎng)圍巖破壞,驗(yàn)證RDM損傷劣化本構(gòu)模型、力學(xué)參數(shù)和FAI評(píng)價(jià)方法的合理性。
[Abstract]:The evolution and formation of the surrounding rock damage zone in deep buried tunnels has been a complicated scientific problem that intersected and intersected with rock mechanics, experimental mechanics, damage mechanics, fracture mechanics and tectonic geology. With the continuous development of rock engineering, geological disasters occur frequently, and the mechanism of deep geological disasters under high stress is studied. The gestation of geological disasters is accompanied by the damage and evolution of the surrounding rock, especially the macro and mesoscopic damage evolution of rock under the unloading condition of deep rock mass excavation, the comprehensive in situ testing method of the large rock mass surrounding rock, the depth of the rock mass, the size of the tunnel, the mode of excavation, the excavation rate and so on. And the evolution mechanism, the prediction of rock mass damage and the determination of support time have become the key problems to be solved in the excavation of deep underground engineering. Based on this, this paper follows the research route from the phenomenon to the essence, from the local to the whole, from the meso to macro, from the in-situ test to the numerical analysis, and analyzes the deep and deep excavation method under the excavation method and the TBM excavation method. The main research work is as follows: (1) according to the test of the excavation damage area of the deep buried tunnel, the advantages of the elastic wave test based on the excavation damage zone, the digital borehole camera, the sliding micrometer deformation test, the micro earthquake and the acoustic emission micro rupture signal location are put forward. The test comprehensive test method has explained the testing principle of the excavation damage area, gives the selection principle of the test site, the construction method of the test platform, the basis of the drill hole layout, the test process, the installation, debugging and data processing methods of the test equipment, and make up for the validity of the single test method, which can not guarantee the validity of the test results. The diversity of the type and the completeness of the mechanical information response of the deep complex rock mass, and in situ test design is carried out with the test test of the excavation of the deep buried test hole in the two stage of Jinping hydropower station. (2) the formation of the core cake formation is the damage evolution process of the rock under the local stress relieving of the deep rock mass. On the basis of the type of mouth shape, the number of core cake and the distribution law of the thickness of the cake core along the direction of the borehole are given. The influence of the depth of the rock mass, the geological structure, the excavation damage, the diameter and direction of the drill hole, the drilling speed and other factors on the core cake are further analyzed. The micromechanical mechanism of the core cake is analyzed by SEM scanning electron microscope in the same position. (3) in view of the evolution and formation mechanism of the damaged area in the deep buried tunnel excavation under the drilling and blasting excavation method, based on the understanding of the blasting rock breaking mechanism and the excavation of the deep buried research test hole, the damage and failure of the tunnel wall excavation are summed up. Mode and cause. Considering different buried depth, tunnel size and excavation way, the characteristics of rock mass damage fracture, the law of changes before and after excavation, the evolution law of fracture width along with the excavation process and time, and the distribution law of the new crack along the borehole axis are analyzed by digital borehole photography. At different time, the wave velocity of rock mass is distributed along the direction of drilling, and the relation between the average wave velocity of the rock mass in the bottom of the hole and the change of the hand surface is given. By the deformation test of the slide micrometer, the relationship between the deformation of rock mass with the excavation time and the change of the length is given. The evolution and the formation mechanism of the excavation damage area under the drilling and blasting method are formed, and the effect of the influence on the axial and radial direction of the tunnel, as well as the time effect effect are given respectively, for the excavation and support of the deep buried tunnel. Suggestions are provided. (4) in view of the evolution and formation mechanism of the damaged area in the deep buried tunnel under TBM excavation, based on the understanding of the mechanism of TBM rock breaking, the structure characteristics of the rock mass, the fracture damage characteristics of the rock mass, and the occurrence of the new fissure in the excavation process are analyzed on the basis of the excavation of the deep buried research test cave and the digital borehole camera test. The relationship between the axial direction of the tunnel and the evolution law of the crack width with the process and time of the excavation are emphatically analyzed. Through the acoustic emission test, the evolution law of the number of acoustic emission events and the event energy in the radial and axial direction of the tunnel with the hand surface is obtained. The damage depth of different boreholes is obtained through the sound wave test of multiple boreholes. Information, combining the stress state of surrounding rock and stress strain curve, the evolution and formation mechanism of the excavation damage area under the excavation of TBM is studied, and the influence range of TBM excavation on the axial and radial direction of the tunnel and the time effect are given respectively, and the suggestion for the design of the excavation and support of the deep buried tunnel by TBM method is proposed. (5) the confining pressure is analyzed based on the numerical simulation method. The influence of the initial damage and critical failure state of the tunnel and the influence of the tunnel size on the deformation of the surrounding rock, and the inversion of the surrounding rock parameters by the in-situ test and other test results, the numerical model of the deep buried tunnel is established by the damage deterioration constitutive model, and the results of the numerical simulation and the damage of the surrounding rock are compared and analyzed, and the RDM damage is verified. The deterioration constitutive model, the mechanical parameters and the FAI evaluation method are reasonable.
【學(xué)位授予單位】:東北大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TU45
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 馮夏庭;陳炳瑞;明華軍;吳世勇;肖亞勛;豐光亮;周輝;邱士利;;深埋隧洞巖爆孕育規(guī)律與機(jī)制:即時(shí)型巖爆[J];巖石力學(xué)與工程學(xué)報(bào);2012年03期
2 陳炳瑞;馮夏庭;明華軍;周輝;曾雄輝;豐光亮;肖亞勛;;深埋隧洞巖爆孕育規(guī)律與機(jī)制:時(shí)滯型巖爆[J];巖石力學(xué)與工程學(xué)報(bào);2012年03期
3 陳益峰;李典慶;榮冠;姜清輝;周創(chuàng)兵;;脆性巖石損傷與熱傳導(dǎo)特性的細(xì)觀力學(xué)模型[J];巖石力學(xué)與工程學(xué)報(bào);2011年10期
4 朱元廣;劉泉聲;康永水;劉愷德;;考慮溫度效應(yīng)的花崗巖蠕變損傷本構(gòu)關(guān)系研究[J];巖石力學(xué)與工程學(xué)報(bào);2011年09期
5 朱紅光;易成;單海霞;張偉澤;;基于CT圖像分析的準(zhǔn)脆性材料軸壓損傷研究[J];中國(guó)礦業(yè)大學(xué)學(xué)報(bào);2011年05期
6 邵曉寧;徐穎;;巖體爆破振速和損傷預(yù)測(cè)的支持向量機(jī)方法[J];采礦與安全工程學(xué)報(bào);2011年03期
7 何偉;吳順川;孟霞;;隧道開(kāi)挖速度與施工優(yōu)化[J];上海交通大學(xué)學(xué)報(bào);2011年S1期
8 盧文波;耿祥;陳明;舒大強(qiáng);周創(chuàng)兵;;深埋地下廠房開(kāi)挖程序及輪廓爆破方式比選研究[J];巖石力學(xué)與工程學(xué)報(bào);2011年08期
9 殷志強(qiáng);李夕兵;金解放;尹土兵;劉科偉;;圍壓卸載速度對(duì)巖石動(dòng)力強(qiáng)度與破碎特性的影響[J];巖土工程學(xué)報(bào);2011年08期
10 劉寧;張春生;褚衛(wèi)江;;深埋隧洞開(kāi)挖損傷區(qū)的檢測(cè)及特征分析[J];巖土力學(xué);2011年S2期
相關(guān)博士學(xué)位論文 前9條
1 張凱;脆性巖石力學(xué)模型與流固耦合機(jī)理研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2010年
2 冷先倫;深埋長(zhǎng)隧洞TBM掘進(jìn)圍巖開(kāi)挖擾動(dòng)與損傷區(qū)研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2009年
3 朱杰兵;高應(yīng)力下巖石卸荷及其流變特性研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2009年
4 黃書(shū)嶺;高應(yīng)力下脆性巖石的力學(xué)模型與工程應(yīng)用研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2008年
5 趙瑜;深埋隧道圍巖系統(tǒng)穩(wěn)定性及非線性動(dòng)力學(xué)特性研究[D];重慶大學(xué);2007年
6 江權(quán);高地應(yīng)力下硬巖彈脆塑性劣化本構(gòu)模型與大型地下洞室群圍巖穩(wěn)定性分析[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2007年
7 閆長(zhǎng)斌;爆破作用下巖體累積損傷效應(yīng)及其穩(wěn)定性研究[D];中南大學(xué);2006年
8 張傳慶;基于破壞接近度的巖石工程安全性評(píng)價(jià)方法的研究[D];中國(guó)科學(xué)院研究生院(武漢巖土力學(xué)研究所);2006年
9 邱戰(zhàn)洪;非線性動(dòng)力損傷力學(xué)理論及其數(shù)值分析模型[D];浙江大學(xué);2005年
相關(guān)碩士學(xué)位論文 前1條
1 徐筠;開(kāi)挖應(yīng)力狀態(tài)下隧道圍巖損傷演化及漸進(jìn)破壞規(guī)律研究[D];重慶交通大學(xué);2008年
,本文編號(hào):1803873
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1803873.html