毛細(xì)管網(wǎng)輻射供冷的傳熱分析及熱舒適性研究
發(fā)布時間:2018-03-21 18:20
本文選題:毛細(xì)管網(wǎng)空調(diào)系統(tǒng) 切入點:熱舒適性 出處:《東華大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:隨著社會經(jīng)濟的不斷發(fā)展,人們對室內(nèi)熱舒適性要求也在不斷提高,空調(diào)能耗十分巨大。對于傳統(tǒng)空調(diào)系統(tǒng)而言,仍存在著一些問題如:溫濕度耦合處理帶來的損失、冷表面滋生霉菌、對流吹風(fēng)感、盤管送風(fēng)的噪音以及室內(nèi)重復(fù)安裝兩套環(huán)境調(diào)節(jié)系統(tǒng)等,如提高舒適程度必然造成了更大的能耗損失。 毛細(xì)管網(wǎng)空調(diào)系統(tǒng)基于溫濕度獨立控制技術(shù)和長波輻射原理,結(jié)合置換通風(fēng)后能有效地提高室內(nèi)空氣品質(zhì),實現(xiàn)能源的梯級利用,是一種舒適,節(jié)能、環(huán)保的空調(diào)系統(tǒng)。 本文首先建立毛細(xì)管微環(huán)境的傳熱物理模型,對整個空調(diào)系統(tǒng)進行傳熱分析,利用CFD軟件進行數(shù)值模擬,探討不同管間距、抹灰材料、供回水溫差等因素對毛細(xì)管輻射頂板的溫度分布及換熱量的影響情況;建立了頂板式毛細(xì)管輻射末端空調(diào)房間的物理模型,運用CFD軟件進行數(shù)值模擬,獲得不同頂板溫度、送風(fēng)方式及送風(fēng)溫度下,供冷房間內(nèi)的溫度場、速度場的分布情況,同時采用Matlab軟件對PMV-PPD評價指標(biāo)公式進行編程,得到輻射空調(diào)系統(tǒng)中人體的熱舒適性情況;最后以一毛細(xì)管網(wǎng)空調(diào)系統(tǒng)房間作實驗驗證,進行溫度場、速度場和相對濕度的測試,并對測試數(shù)據(jù)進行了分析,與上述的數(shù)值模擬結(jié)果進行對比。結(jié)果顯示,實測值與數(shù)值模擬值基本吻合,證明了利用數(shù)值模擬的方式對毛細(xì)管網(wǎng)空調(diào)系統(tǒng)熱環(huán)境進行預(yù)測是可行的。 計算結(jié)果表明:管間距、抹灰材料、供水流速及溫度對頂板的換熱性能影響顯著,最優(yōu)的參數(shù)取值可保證頂板換熱能力最強,熱流密度大于60w/m2。在探討人體熱舒適性時,本文認(rèn)為熱舒適性指標(biāo)PMV取-0.5-+0.5為最佳,即保證預(yù)測不滿意率(PPD)在10%以內(nèi),結(jié)果顯示采用下送上回的送風(fēng)方式要優(yōu)于其它送風(fēng)方式;頂板溫度為影響人體熱舒適性的主要因素,不超過20℃時預(yù)測不滿意率小于10%。 本文的研究一定程度上彌補了現(xiàn)有毛細(xì)管網(wǎng)空調(diào)系統(tǒng)在應(yīng)用中遇到的問題,可為行業(yè)內(nèi)設(shè)計、施工提供一定的參考,毛細(xì)管網(wǎng)空調(diào)系統(tǒng)運用于舒適性要求高的高檔辦公、住宅樓具有很大的發(fā)展前景。
[Abstract]:With the development of social economy, the requirement of indoor thermal comfort is increasing, and the energy consumption of air conditioning is very great. For the traditional air conditioning system, there are still some problems such as the loss caused by coupled treatment of temperature and humidity. Cold surface breeding mold, convection blowing sense, the noise of coil air supply, and indoor repeated installation of two sets of environmental regulation systems, such as increasing the degree of comfort will inevitably lead to greater energy loss. Capillary net air conditioning system based on temperature and humidity independent control technology and long wave radiation principle, combined with displacement ventilation can effectively improve indoor air quality and realize cascade utilization of energy. It is a comfortable, energy saving and environmental protection air conditioning system. In this paper, the heat transfer physical model of capillary microenvironment is established, and the heat transfer analysis of the whole air conditioning system is carried out. The numerical simulation is carried out by using CFD software, and the different tube-spacing and plastering materials are discussed. The effect of temperature difference of water supply and backwater on the temperature distribution and heat transfer of capillary radiation roof was studied, and the physical model of the top plate capillary radiation end air conditioning room was established, and the different roof temperature was obtained by numerical simulation with CFD software. The distribution of the temperature field and velocity field in the cooling room under the air supply mode and the air supply temperature. At the same time, the PMV-PPD evaluation index formula is programmed by Matlab software, and the thermal comfort of the human body in the radiation air conditioning system is obtained. Finally, the temperature field, velocity field and relative humidity are tested with a capillary air conditioning system room, and the test data are analyzed and compared with the numerical simulation results mentioned above. The results show that the temperature field, the velocity field and the relative humidity are measured. The measured values are in good agreement with the numerical simulation values, which proves that it is feasible to predict the thermal environment of the capillary air conditioning system by numerical simulation. The results show that the pipe spacing, plastering material, water flow rate and temperature have significant effects on the heat transfer performance of the roof, and the optimum parameter values can ensure the heat transfer capacity of the roof is the strongest, and the heat flux is greater than 60w / m2. When the thermal comfort of the human body is discussed, In this paper, the optimum thermal comfort index (PMV) is -0.5-0.5, that is to say, the predicted unsatisfactory rate is less than 10%. The results show that the air supply mode with downward return is superior to other air supply methods, and the roof temperature is the main factor affecting the thermal comfort of human body. The predicted unsatisfactory rate is less than 10 at 20 鈩,
本文編號:1645009
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1645009.html
最近更新
教材專著