空間分辨率對(duì)建筑物尖端大氣電場(chǎng)畸變影響的數(shù)值模擬研究
本文選題:大氣電場(chǎng)畸變 切入點(diǎn):空間分辨率 出處:《南京信息工程大學(xué)》2013年碩士論文 論文類型:學(xué)位論文
【摘要】:建筑物頂部的拐角和尖端對(duì)大氣電場(chǎng)的畸變作用,是大氣邊界層中的眾多放電現(xiàn)象重要的觸發(fā)因子之一。較為精確的獲取建筑物頂部的電場(chǎng)分布,對(duì)大氣電學(xué)研究以及雷電防護(hù)工作均具有深遠(yuǎn)意義。但受觀測(cè)手段的限制,數(shù)值仿真計(jì)算是此類研究的主要手段。使用離散網(wǎng)格代替連續(xù)空間的數(shù)值計(jì)算,因空間分辨率的引入,導(dǎo)致計(jì)算結(jié)果不可避免地產(chǎn)生系統(tǒng)誤差;诖,本文建立建筑物頂部大氣電場(chǎng)計(jì)算的二維模型,通過(guò)大量不同分辨率下的敏感模擬實(shí)驗(yàn),探討建筑物尖端對(duì)大氣電場(chǎng)畸變的影響;分析數(shù)值計(jì)算時(shí)系統(tǒng)誤差的主要來(lái)源;并探索減小此誤差的方法。本文的主要研究結(jié)果如下: (1)基于大量不同空間分辨率的模型輸出結(jié)果,發(fā)現(xiàn)大氣電場(chǎng)畸變系數(shù)與空間分辨率呈指數(shù)增加關(guān)系;并根據(jù)此關(guān)系,外推法估算出了連續(xù)空間下建筑物頂部的電場(chǎng)畸變系數(shù)大小,建立了此電場(chǎng)畸變系數(shù)與建筑物尺寸的多元回歸方程。 (2)空間分辨率對(duì)大氣電場(chǎng)畸變系數(shù)隨建筑物及尖端的幾何尺寸的變化關(guān)系式的函數(shù)形式不產(chǎn)生影響,但對(duì)關(guān)系式中各變量的系數(shù)產(chǎn)生較大影響。即無(wú)論是連續(xù)空間下還是離散空間下,建筑物頂部拐角處或者建筑物尖端頂部的大氣電場(chǎng)畸變系數(shù),皆與研究物體的高度呈線性增加關(guān)系,與研究物體的寬度呈指數(shù)遞減關(guān)系;但對(duì)關(guān)系式中各變量的系數(shù)皆隨空間分辨率的變細(xì)呈指數(shù)增加。 (3)使用離散空間代替連續(xù)空間,由空間分辨率不同而引入計(jì)算結(jié)果的系統(tǒng)誤差,此誤差值的大小僅與分辨率粗細(xì)有關(guān),與建筑物尺寸的大小無(wú)關(guān)。當(dāng)分辨率固定時(shí),此誤差值也是固定值,且分辨率越細(xì),計(jì)算結(jié)果的系統(tǒng)誤差越小。此外,使用外推法估算連續(xù)空間下的大氣電場(chǎng)畸變系數(shù),在建立擬合方程時(shí),最細(xì)分辨率下的計(jì)算結(jié)果,對(duì)外推結(jié)果具有決定性作用。
[Abstract]:The distortion of the atmospheric electric field caused by the corner and tip of the top of the building is one of the important triggering factors of many discharge phenomena in the atmospheric boundary layer. It is of great significance for atmospheric electrical research and lightning protection. However, due to the limitation of observation means, numerical simulation is the main means of this kind of research. The discrete grid is used to replace the numerical calculation in continuous space. Because of the introduction of spatial resolution, the calculation result inevitably produces systematic error. Based on this, a two-dimensional model for calculating the atmospheric electric field at the top of a building is established, and a large number of sensitive simulation experiments at different resolutions are carried out. This paper discusses the influence of building tip on atmospheric electric field distortion, analyzes the main sources of systematic error in numerical calculation, and explores the methods to reduce this error. The main results of this paper are as follows:. 1) based on the output results of a large number of models with different spatial resolutions, it is found that the atmospheric electric field distortion coefficient increases exponentially with the spatial resolution, and according to this relationship, The extrapolation method estimates the magnitude of the electric field distortion coefficient at the top of the building in continuous space and establishes the multivariate regression equation between the electric field distortion coefficient and the building size. (2) the spatial resolution has no effect on the functional form of the relationship between the atmospheric electric field distortion coefficient and the geometric size of the building and its tip. But it has a great influence on the coefficients of the variables in the relationship, that is, the atmospheric electric field distortion coefficient at the top corner of the building or at the top of the building tip, whether in the continuous space or in the discrete space. All of them are linearly increased with the height of the studied object and exponentially decreasing with the width of the studied object, but the coefficients of each variable in the relationship increase exponentially with the change of spatial resolution. Using discrete space instead of continuous space, the systematic error of calculation result is introduced by different spatial resolution. The error value is only related to the resolution thickness, but independent of the size of the building. When the resolution is fixed, This error is also a fixed value, and the finer the resolution, the smaller the systematic error. In addition, the extrapolation method is used to estimate the atmospheric electric field distortion coefficient in continuous space. The result of extrapolation is decisive.
【學(xué)位授予單位】:南京信息工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TU119.2;TU856;P427.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 周璧華;姜慧;劉海波;郭建明;朱凱鄂;;地面與空中大氣電場(chǎng)的對(duì)應(yīng)關(guān)系研究[J];電波科學(xué)學(xué)報(bào);2010年01期
2 周璧華;姜慧;楊波;郭建明;朱凱鄂;;地物環(huán)境對(duì)地面大氣電場(chǎng)測(cè)量的影響[J];電波科學(xué)學(xué)報(bào);2010年05期
3 張麗萍,袁建生;電磁場(chǎng)數(shù)值計(jì)算國(guó)際會(huì)議綜述[J];電工技術(shù)雜志;1998年06期
4 馬昆齊;;用模擬電荷法計(jì)算電場(chǎng)的算法分析[J];哈爾濱電工學(xué)院學(xué)報(bào);1986年03期
5 廖臣;祝大軍;劉盛綱;;五點(diǎn)差分格式求解泊松方程并行算法的研究[J];電子科技大學(xué)學(xué)報(bào);2008年01期
6 周詩(shī)健;任麗新;陳立祥;;強(qiáng)電X4探空儀尖端感應(yīng)元件的實(shí)歐研究[J];地球物理學(xué)報(bào);1965年01期
7 譚涌波;陶善昌;祝寶友;馬明;呂偉濤;;云閃放電對(duì)云內(nèi)電荷和電位分布影響的數(shù)值模擬[J];地球物理學(xué)報(bào);2007年04期
8 宋燎原;王平;張海峰;李柱銀;;靜態(tài)電磁場(chǎng)邊值問(wèn)題計(jì)算方法[J];大學(xué)物理;2007年08期
9 豆桂芳;吳振遠(yuǎn);杜艷林;;三維泊松方程的七點(diǎn)差分格式[J];工程地球物理學(xué)報(bào);2009年06期
10 杜慶華,姚振漢;邊界積分方程—邊界元法的基本理論及其在彈性力學(xué)方面的若干工程應(yīng)用[J];固體力學(xué)學(xué)報(bào);1982年01期
,本文編號(hào):1572016
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1572016.html