天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 施工技術(shù)論文 >

液壓挖掘機(jī)多路閥內(nèi)流阻分析與流道結(jié)構(gòu)優(yōu)化

發(fā)布時間:2018-02-28 03:51

  本文關(guān)鍵詞: 挖掘機(jī)液壓系統(tǒng) 負(fù)流量-恒功率控制 多路閥 流動阻力 側(cè)向力 流道結(jié)構(gòu)優(yōu)化 出處:《蘭州理工大學(xué)》2013年碩士論文 論文類型:學(xué)位論文


【摘要】:整體式多路閥內(nèi)部流道結(jié)構(gòu)復(fù)雜,在挖掘機(jī)作業(yè)時存在閥口的節(jié)流損失和閥內(nèi)部流道的阻力損失,造成了一定的能量消耗。本文根據(jù)液壓挖掘機(jī)實際雙泵合流和單泵供油工況,針對挖掘機(jī)快速提臂、動臂下降和鏟斗內(nèi)收動作,考慮多路閥節(jié)流口和內(nèi)部流道結(jié)構(gòu),應(yīng)用AM-ESim和FLUENT軟件聯(lián)合仿真,研究整體式多路閥內(nèi)部流動阻力損失情況及其主要發(fā)生部位,分析雙泵合流工況下動臂閥芯所受較大側(cè)向力的原因,從減小閥內(nèi)部流動阻力損失和閥芯側(cè)向力不平衡的問題入手,對流道結(jié)構(gòu)進(jìn)行優(yōu)化。本研究對于深入理解多路閥內(nèi)部流動阻力損失和流道結(jié)構(gòu)的優(yōu)化具有普遍的指導(dǎo)意義。 主要內(nèi)容如下: 第1章,闡述了本論文研究的背景和意義;簡單介紹了液壓挖掘機(jī)液壓系統(tǒng)的幾種流量控制方式;概括了本文的主要研究內(nèi)容。 第2章,結(jié)合變量泵壓力流量特性曲線,分析液壓挖掘機(jī)負(fù)流量—恒功率控制系統(tǒng)的原理以及動臂、鏟斗動作的工作原理,并對六通多路閥—負(fù)流量控制泵系統(tǒng)的控制模型進(jìn)行了分析。根據(jù)變量泵的壓力—流量曲線數(shù)學(xué)表達(dá)式,利用AMESim中超級元件將數(shù)學(xué)表達(dá)式進(jìn)行封裝完成變量泵模型。將動臂閥和鏟斗閥的閥口面積—閥芯位移曲線,通過文本形式導(dǎo)入到帶有節(jié)流槽的滑閥基本模塊中完成多路閥的AMESim模型。多路閥先導(dǎo)壓力控制信號為系統(tǒng)輸入信號,最后完成挖掘機(jī)動臂、鏟斗回路液壓系統(tǒng)模型,基于仿真模型分析挖掘機(jī)快速提臂、動臂下降、鏟斗內(nèi)收單獨(dú)動作時的系統(tǒng)動態(tài)特性,以及得到各單獨(dú)動作時多路閥相關(guān)的壓力流量數(shù)值,為第三章多路閥內(nèi)流阻計算分析提供數(shù)據(jù)依據(jù)。 第3章,根據(jù)液壓挖掘機(jī)實際雙泵合流工況下的動臂快速提升動作和單泵供油工況下的動臂下降、鏟斗內(nèi)收動作,考慮多路閥節(jié)流口和內(nèi)部流道結(jié)構(gòu),應(yīng)用FLUENT軟件,對多路閥內(nèi)部流場進(jìn)行解析,研究整體式多路閥內(nèi)部流動阻力損失情況及其主要發(fā)生部位。結(jié)果表明:快速提臂雙泵合流時多路閥內(nèi)流動阻力達(dá)2.6MPa,阻力主要發(fā)生在合流窗口、節(jié)流口和直彎流道處;發(fā)現(xiàn)合流窗口處高速液流沖擊其后閥芯及閥腔,高速液流交匯增大了流動阻力,改變了閥腔內(nèi)壓力分布使閥芯受到較大的側(cè)向力。動臂下降和鏟斗內(nèi)收單泵供油時多路閥內(nèi)流動阻力損失比較小,阻力損失主要發(fā)生在閥口部位。 第4章,計算得到在單獨(dú)動作時動臂閥和鏟斗閥液壓側(cè)向力的大小。針對快速提臂雙泵合流時側(cè)向力產(chǎn)生的原因和阻力損失發(fā)生的部位,優(yōu)化閥體流道結(jié)構(gòu),將優(yōu)化后的流道進(jìn)行流場計算分析,結(jié)果表明:優(yōu)化后雙泵合流時內(nèi)部流動阻力損失為1.5MPa,比優(yōu)化前阻力損失減小1.1MPa,動臂閥1存在的側(cè)向力為96N,比優(yōu)化前側(cè)向力減小24N。 最后,對本論文的研究工作和成果進(jìn)行了總結(jié),展望了下一步的研究工作。
[Abstract]:The internal flow channel structure of the monolithic multi-way valve is complex, the throttling loss of the valve and the resistance loss of the internal passage of the valve exist in the operation of the excavator, which results in a certain energy consumption. In this paper, according to the actual conditions of the double pump conjunct flow and the single pump oil supply of the hydraulic excavator, In view of the quick lifting arm of excavator, the drop of moving arm and the lifting action of bucket, considering the structure of throttle and internal flow channel of multi-way valve, the internal flow resistance loss and its main place of occurrence of integral multi-way valve are studied by using AM-ESim and FLUENT software. This paper analyzes the causes of the larger lateral force on the movable arm valve core under the combined flow condition of two pumps, and starts with the problems of reducing the loss of flow resistance inside the valve and the imbalance of the lateral force of the valve core. This study is of general significance for understanding the internal flow resistance loss and the optimization of the flow channel structure of the multi-channel valve. The main contents are as follows:. In chapter 1, the background and significance of this paper are described, several flow control methods of hydraulic system of hydraulic excavator are briefly introduced, and the main research contents of this paper are summarized. In chapter 2, the principle of negative flow-constant power control system of hydraulic excavator and the working principle of moving arm and bucket are analyzed in combination with the pressure and flow characteristic curve of variable pump. The control model of the six-way multi-way valve-negative flow control pump system is analyzed. According to the mathematical expression of the pressure-flow curve of the variable pump, The mathematical expression is encapsulated in AMESim to complete the variable pump model. The area of valve orifice and valve core displacement curve of arm valve and bucket valve are analyzed. The AMESim model of the multi-channel valve is completed by introducing the text form into the basic module of the slide valve with throttling slot. The pilot pressure control signal of the multi-channel valve is the input signal of the system. Finally, the hydraulic system model of the excavator arm and bucket loop is completed. Based on the simulation model, the system dynamic characteristics of the excavator with quick lifting arm, falling arm, and separate action of bucket are analyzed, and the pressure and flow values related to multi-way valves are obtained. It provides the data basis for the calculation and analysis of the internal flow resistance of the multi-way valve in chapter 3. In chapter 3, according to the quick lifting action of the moving arm under the actual double pump combined flow condition of hydraulic excavator and the drop of the moving arm under the condition of single pump oil supply, and the action of lifting the bucket, considering the structure of the multi-way valve throttle and the internal runner, the FLUENT software is used. The internal flow field of multi-way valve is analyzed, and the internal flow resistance loss and its main position are studied. The results show that the flow resistance in multi-way valve is 2.6 MPA when the quick lifting double pump flows together, and the resistance mainly occurs in the confluence window. It is found that the high speed liquid flow at the confluence window impinges on the valve core and the valve cavity, and the intersection of the high speed liquid flow increases the flow resistance. By changing the pressure distribution in the valve chamber, the valve core is subjected to a larger lateral force. The flow resistance loss in the multi-way valve is relatively small when the arm drops and the single pump in the bucket is fed, and the resistance loss mainly occurs at the valve orifice. In chapter 4, the hydraulic lateral force of the arm valve and bucket valve is calculated when the valve is acting alone. Aiming at the cause of the lateral force and the position of the resistance loss, the structure of the valve body passage is optimized in view of the cause of the side force and the position of the resistance loss in the close flow of the quick lift arm double pump. The flow field of the optimized flow channel is calculated and analyzed. The results show that the internal flow resistance loss is 1.5 MPA, which is 1.1 MPA lower than that before optimization, and the lateral force of arm valve 1 is 96 Ns, which is 24Ns less than that of optimized forward side force. Finally, the research work and results of this paper are summarized, and the next research work is prospected.
【學(xué)位授予單位】:蘭州理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TU621

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 馮曉蓉;;從工程機(jī)械行業(yè)分析看工程機(jī)械專業(yè)的發(fā)展前景[J];出國與就業(yè)(就業(yè)版);2011年14期

2 黃曉鳳;;中國工程機(jī)械產(chǎn)品出口東盟的影響因素及對策[J];財經(jīng)理論與實踐;2009年03期

3 馮開林,陳康寧,鄒廣德,高松;先進(jìn)液壓控制技術(shù)在工程機(jī)械的應(yīng)用研究[J];工程機(jī)械;2002年05期

4 秦家升 ,游善蘭;AMESim軟件的特征及其應(yīng)用[J];工程機(jī)械;2004年12期

5 冀宏;王東升;丁大力;譚正生;劉小平;;非全周開口滑閥閥口面積的計算方法[J];蘭州理工大學(xué)學(xué)報;2008年03期

6 陳世教,,洪昌銀,劉琛;現(xiàn)代全液壓挖掘機(jī)多路閥的功能[J];重慶建筑大學(xué)學(xué)報;1999年03期

7 陳桂芳;郭勇;劉鋒;;挖掘機(jī)液壓系統(tǒng)建模仿真及能耗分析[J];機(jī)械設(shè)計與研究;2011年05期

8 黃宗益,李興華,葉偉;挖掘機(jī)工作裝置液壓操縱回路(一)[J];建筑機(jī)械化;2003年11期

9 郭勇;張德勝;冀謙;;基于AMESim的挖掘機(jī)動臂液壓回路仿真研究[J];建筑機(jī)械;2007年23期

10 黃人豪,濮鳳根;液壓控制元件產(chǎn)品結(jié)構(gòu)創(chuàng)新和發(fā)展趨勢[J];流體傳動與控制;2005年01期

相關(guān)碩士學(xué)位論文 前6條

1 侯敏;液控滑閥閥芯運(yùn)動特性的研究[D];蘭州理工大學(xué);2011年

2 曹永;液壓閥的節(jié)流溫升與熱形變的研究[D];蘭州理工大學(xué);2011年

3 陳桂芳;挖掘機(jī)負(fù)流量控制液壓系統(tǒng)建模仿真及能耗分析研究[D];中南大學(xué);2011年

4 向?qū)?工程機(jī)械企業(yè)國際化組織結(jié)構(gòu)的創(chuàng)新與選擇[D];中南大學(xué);2009年

5 葉鵬飛;小型液壓挖掘機(jī)節(jié)流控制系統(tǒng)建模與仿真研究[D];中南大學(xué);2009年

6 李建仁;挖掘機(jī)工作裝置液壓系統(tǒng)分析[D];蘭州理工大學(xué);2010年



本文編號:1545642

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1545642.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶12918***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com