太陽(yáng)能—地源熱泵復(fù)合系統(tǒng)的模擬優(yōu)化
本文關(guān)鍵詞: 地源熱泵 交替蓄熱 冷熱負(fù)荷不平衡 TRNSYS 出處:《山東建筑大學(xué)》2013年碩士論文 論文類(lèi)型:學(xué)位論文
【摘要】:本文以實(shí)驗(yàn)為基礎(chǔ)對(duì)螺桿地源熱泵機(jī)組理論模型中的多變指數(shù)進(jìn)行了修正,建立了螺桿地源熱泵機(jī)組的灰箱模型,編寫(xiě)了以此灰箱模型為基礎(chǔ)的螺桿地源熱泵機(jī)組FORTRAN模擬程序。模擬了R22為制冷劑螺桿地源熱泵機(jī)組的運(yùn)行特性。分析夏季制冷、冬季制熱兩種運(yùn)行工況下不同蒸發(fā)器入口水溫、冷凝器入口水溫及壓縮機(jī)輸氣量對(duì)機(jī)組的制冷量、制熱量、壓縮機(jī)功耗及COP的影響。 通過(guò)對(duì)熱泵機(jī)組的模擬獲得不同輸氣量條件下熱泵機(jī)組隨蒸發(fā)器入口水溫和冷凝器入口水溫變化的運(yùn)行數(shù)據(jù),以此數(shù)據(jù)為基礎(chǔ),結(jié)合地源熱泵機(jī)組的實(shí)際控制方式在TRNSYS環(huán)境中搭建熱泵機(jī)組模擬模塊,此方法避免了熱泵機(jī)組程序的重復(fù)計(jì)算加快了模擬速度,同時(shí)比簡(jiǎn)單的滿(mǎn)負(fù)荷的啟?刂撇呗栽黾恿四M精度,更加符合熱泵機(jī)組的實(shí)際運(yùn)行狀況。使系統(tǒng)小步長(zhǎng)的長(zhǎng)時(shí)間模擬更加準(zhǔn)確快速。 對(duì)利用太陽(yáng)能在5月1日到10月1日期間為地源熱器蓄熱的方法進(jìn)行了模擬,驗(yàn)證了利用太陽(yáng)能資源比較豐富的時(shí)間進(jìn)行蓄熱的可行性。確定了不同集熱器面積下的太陽(yáng)能蓄熱水泵的流量的計(jì)算方法。 提出了太陽(yáng)能交替蓄熱-地源熱泵系統(tǒng),以沈陽(yáng)地區(qū)某建筑為具體研究對(duì)象,建立包括太陽(yáng)能集熱器、地源熱泵機(jī)組、地源換熱器、控制系統(tǒng)、氣象參數(shù)、水泵和建筑負(fù)荷在內(nèi)的復(fù)合系統(tǒng)的TRNSYS動(dòng)態(tài)模型。對(duì)常規(guī)地源熱泵系統(tǒng)和不同集熱器面積的太陽(yáng)能交替蓄熱-地源熱泵系統(tǒng)進(jìn)行了長(zhǎng)達(dá)9年的模擬。 對(duì)常規(guī)地源熱泵和不同面積太陽(yáng)能集熱器面積的太陽(yáng)能交替蓄熱-地源熱泵系統(tǒng)的瞬時(shí)制熱能力、制冷能力、制熱能耗、制冷能耗進(jìn)行了模擬,并進(jìn)行了逐年積分,對(duì)于制熱能力不足的系統(tǒng)引入冬季制熱輔助熱源(燃煤鍋爐),把耗電折合成燃煤,得出了不同系統(tǒng)的綜合能耗、能效、燃煤量,CO2、SO2、NO2的排放量。 沈陽(yáng)地區(qū)存在冷熱負(fù)荷不平衡的問(wèn)題,如果采用常規(guī)方式的地源熱泵系統(tǒng),這種冷熱負(fù)荷的不平衡將造成地溫均值的下降,從而引起冬季地源熱泵機(jī)組的保護(hù)性停機(jī),無(wú)法滿(mǎn)足用戶(hù)的冬季供熱需求,而采用太陽(yáng)能冬季補(bǔ)熱的形式由于沈陽(yáng)地區(qū)冬季太陽(yáng)能集熱效果差,需要較大集熱器面積和集熱效果更好的真空管熱管集熱器,極大的提高了初投資。而利用太陽(yáng)能資源豐富的時(shí)間進(jìn)行蓄熱可以使用價(jià)格相對(duì)較低的平板型太陽(yáng)能集熱器即可達(dá)到較好的集熱效果。 得出了太陽(yáng)能交替蓄熱-地源熱泵系統(tǒng)可以在不使用冬季輔助熱源的情況下,實(shí)現(xiàn)地下溫度場(chǎng)的動(dòng)態(tài)穩(wěn)定,既能改善地源熱泵冬季供熱能力不足又不會(huì)引起夏季制冷能力的下降,在所研究的建筑中平板型太陽(yáng)能集熱器面積達(dá)到400m2時(shí),太陽(yáng)能交替蓄熱-地源熱泵系統(tǒng)既可以為用戶(hù)提供滿(mǎn)足舒適度要求的冷熱量,又具有較高的能效比和環(huán)境效益,是最優(yōu)配置。
[Abstract]:On the basis of experiments, the variable exponents in the theoretical model of the screw ground source heat pump unit are modified, and the grey box model of the screw ground source heat pump unit is established. The FORTRAN simulation program of screw ground source heat pump unit based on the grey box model was compiled. The operating characteristics of the screw ground source heat pump unit R22 as refrigerant were simulated and the summer refrigeration was analyzed. The effects of inlet water temperature of evaporator, inlet water temperature of condenser and compressor gas delivery on the refrigerating capacity, heating capacity, compressor power consumption and COP of the unit under two operating conditions of heating in winter. Through the simulation of the heat pump unit, the operating data of the heat pump unit with the inlet water temperature of the evaporator and the inlet water temperature of the condenser are obtained under the condition of different air delivery rate, which is based on the data. Combined with the actual control mode of ground source heat pump unit, the simulation module of heat pump unit is built in TRNSYS environment. This method avoids the repeated calculation of heat pump unit program and accelerates the simulation speed. At the same time, compared with the simple full load start and stop control strategy, the simulation accuracy is increased, which is more in line with the actual operating condition of the heat pump unit, and makes the long time simulation of the system with small step size more accurate and fast. The method of using solar energy to store heat from May 1st to October 1st is simulated. The feasibility of using abundant solar energy resources to store heat is verified, and the calculation method of flow rate of solar energy regenerative pump under different collector area is determined. A solar alternately regeneration-ground source heat pump system is proposed. Taking a building in Shenyang area as a specific research object, the solar collector, ground source heat pump unit, ground source heat exchanger, control system and meteorological parameters are established. The TRNSYS dynamic model of the composite system including water pump and building load has been simulated for 9 years for conventional ground source heat pump system and solar alternate heat storage and ground source heat pump system with different collector area. The instantaneous heating capacity, refrigeration capacity, heating energy consumption and refrigeration energy consumption of conventional ground source heat pump and solar energy collector with different area are simulated. And year by year integral, for the system with insufficient heating capacity to introduce the winter heating auxiliary heat source (coal-fired boiler, power consumption into coal-fired, the comprehensive energy consumption of different systems, energy efficiency, coal-burning amount of CO _ 2. Emission of so _ 2o _ 2. There is the problem of unbalanced cold and heat load in Shenyang area. If the conventional ground source heat pump system is adopted, the imbalance of the heat and cold load will cause the decrease of the mean value of the ground temperature. Therefore, the protective shutdown of ground-source heat pump units in winter can not meet the heating needs of users in winter, but the solar energy heating in winter is not good because of the poor effect of solar energy collection in Shenyang in winter. The vacuum tube heat pipe collector with larger collector area and better collector effect is needed. The initial investment is greatly increased, and the use of solar energy rich time for heat storage can use relatively low price flat solar collector to achieve a better heat collection effect. It is concluded that the dynamic stability of underground temperature field can be realized without the use of auxiliary heat source in winter in the solar alternately regenerative ground-source heat pump system. It can not only improve the lack of heating capacity of ground-source heat pump in winter but also can not cause the decrease of cooling capacity in summer. When the area of flat solar collector reaches 400 m2 in the buildings studied. The alternative solar energy accumulation-ground source heat pump system can not only provide users with the cooling heat to meet the requirements of comfort, but also have a higher energy efficiency ratio and environmental benefit, so it is the best configuration.
【學(xué)位授予單位】:山東建筑大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類(lèi)號(hào)】:TU831
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 伏龍,丁國(guó)良,張春路,蘇祖堅(jiān);螺桿冷水機(jī)組動(dòng)態(tài)仿真[J];低溫工程;2002年06期
2 張?jiān)录t;徐國(guó)英;張小松;;太陽(yáng)能與空氣復(fù)合源熱泵熱水系統(tǒng)多模式運(yùn)行實(shí)驗(yàn)特性[J];化工學(xué)報(bào);2010年02期
3 李永;王侃宏;侯立泉;谷鐵柱;;土壤源熱泵技術(shù)對(duì)溫室氣體(GHG)減排的貢獻(xiàn)[J];河北建筑科技學(xué)院學(xué)報(bào);2006年04期
4 周光輝;張岑;劉寅;陳圣潔;張超;;太陽(yáng)能-空氣復(fù)合熱源熱泵供熱特性實(shí)驗(yàn)研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2009年S2期
5 張志剛;王蕾;;太陽(yáng)能/空氣復(fù)合熱泵系統(tǒng)夏季能效比的測(cè)試與研究[J];建筑熱能通風(fēng)空調(diào);2009年05期
6 曲云霞,方肇洪,張林華,李安桂;太陽(yáng)能輔助供暖的地源熱泵經(jīng)濟(jì)性分析[J];可再生能源;2003年01期
7 郎四維,林海燕,付祥釗,涂逢祥;《夏熱冬冷地區(qū)居住建筑節(jié)能設(shè)計(jì)標(biāo)準(zhǔn)》簡(jiǎn)介[J];暖通空調(diào);2001年04期
8 O辭橇,
本文編號(hào):1490454
本文鏈接:http://sikaile.net/kejilunwen/sgjslw/1490454.html