鹽堿地微環(huán)境改良劑的研究
[Abstract]:In this experiment, a new fertilizer called (SSRF), is developed, which can effectively repair the soil (SS) microenvironment in saline-alkali land. The fertilizer was prepared from saline-alkali soil microenvironment improver (SSRA) and traditional fertilizer (TF). The modification agent of saline-alkali soil microenvironment is a nano-composite prepared from attapulgite (ATP), organic polymer (SP), phosphogypsum (PG) and weathered coal (WC). This fertilizer can self-assemble in soil to form a 3-D micro / nano network structure of holding water and preserving fertilizer. And through the action of ion exchange, passivation and acid-alkali regulation to improve the salt-alkali soil of the micro-environment near the root system of crops, reduce salt pressure and alkali, promote the growth of crops, and improve the salt-alkali tolerance of crops. 1. In this study, the optimum composition ratio of microenvironment improver in saline-alkali soil was found to be attapulgite, organic polymer, phosphogypsum and weathered coal. The mass ratio was 60? 30? 1? The microstructure and basic chemical composition of special fertilizer for saline-alkali land were analyzed by SEM, IR and X-ray diffraction. It is found that the special fertilizer in saline-alkali land can self-assemble to form a 3D micro-nano-network structure, and function through ion exchange, passivation and acid-alkali regulation. The synthesis of microenvironmental improver and special fertilizer for saline-alkali land is a process of physical recombination. 3. The effect of salt reduction and alkali reduction was determined by two test systems: salt-separating (SI) and ion-exchange (IE). The salt reduction rate of salt isolation system and ion exchange system can reach 30.54% and 61.91%, respectively, and the soil pH value can be reduced from strong alkaline to neutral level by using microenvironment improver in saline-alkali soil. The salt reduction rate of salt isolation system can reach 30.54%, that of ion exchange system can reach 61.91%, and soil pH can be reduced from strong alkaline to neutral level. The leaching test and surface aggregation test showed that the microenvironment improver could effectively control the loss and aggregation of fertilizer, thus reducing the waste of fertilizer caused by Rain Water, runoff and evaporation. When the mass ratio of urea to microenvironment improver in saline-alkali soil is 9: 1, the control rate of urea (SSRU), in quartz sand is 49.90%, the rate of control surface aggregation is 44.3%, and in saline-alkali soil, the control rate is 43.78%, and that of urea in saline-alkali soil is 43.78%, and that of urea in saline-alkali soil is 43.78%. The rate of surface aggregation is 22.49%; The mass ratio of ammonium chloride to micro-environment improver in saline-alkali land was 9: 1.2. The control rate of ammonium chloride (SSRN), in quartz sand was 47.23%, and the rate of controlling surface aggregation was 61.71%, and that of ammonium chloride in saline-alkali land was 47.23% and 61.71%, respectively. In saline-alkali soil, the rate of control is 49.02%, and the rate of surface aggregation is 7.02%. The addition of 0.6g saline-alkali soil microenvironment improver in 20 g soil was the best addition, and maize growth was better. Compared with the traditional fertilizer, the microenvironment improver in saline-alkali soil can effectively repair the saline-alkali soil and promote the growth of maize plant height and root system at seedling stage. 6. In the field experiment, maize growing in saline-alkali soil with special fertilizer in saline-alkali field is generally greener in leaf color and more vigorous in growth than that in common fertilizer. The yield of maize in mature stage is higher and the corn is fuller than that of common fertilizer. The germination percentage, rod length, rod diameter, plant height, diameter and yield increased 19.3%, 12.4%, 14.2%, 12.9%, 23.6% and 27.0%, respectively, in the experiment of equal fertilizer content in Yinchuan City, the growth rate of maize was 19.3%, 12.4%, 14.2%, 12.9%, 23.6% and 27.0%. The germination percentage, rod length, rod diameter, plant height, diameter and yield of maize increased by 18.1%, 11.8%, 8.8%, 16.5%, 14.1% and 21.8%, respectively, when the weight loss was 10%, and the yield of maize was increased by 18.1%, 11.8%, 8.8%, 16.5%, 14.1% and 21.8% respectively. The germination percentage, rod length, rod diameter, plant height, diameter and yield of maize increased by 23.9%, 17.3%, 15.2%, 12.1%, 16.4% and 24.0%, respectively.
【學(xué)位授予單位】:安徽農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:S156.4
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 努果;淺談鹽堿地的改良與利用[J];青海草業(yè);2000年02期
2 吳玉明;鹽堿地改良十招[J];山西農(nóng)機(jī);2000年02期
3 俞曉花;張玉華;;鹽堿地改良實(shí)踐[J];新疆農(nóng)業(yè)科技;2007年01期
4 賈廣和;;鹽堿地綜合整治與開發(fā)研究[J];西南林學(xué)院學(xué)報(bào);2008年04期
5 劉新琴;楊建國;崔彥祥;高云;樊麗琴;尚紅鶯;紀(jì)立東;杜永霞;;石嘴山市鹽堿地改良發(fā)展戰(zhàn)略[J];寧夏農(nóng)林科技;2010年06期
6 陳玉林;;鹽堿地改良模式淺析[J];現(xiàn)代化農(nóng)業(yè);2011年08期
7 王維國,,陳延亮;鹽堿地改良措施及效果分析[J];農(nóng)田水利與小水電;1994年07期
8 李德勇,江濤;鹽堿地改良十法[J];農(nóng)村新技術(shù);1998年09期
9 朱仲權(quán),王銳,鄧新江;鹽堿地改良小議[J];新疆農(nóng)墾科技;1998年06期
10 鄭必昭;山西省鹽堿地改良利用近況[J];山西農(nóng)業(yè)科學(xué);1999年04期
相關(guān)會(huì)議論文 前10條
1 馬曉平;張志宏;王興民;;鹽堿地改良栽培枸杞[A];寧夏林學(xué)會(huì)第二屆林業(yè)優(yōu)秀學(xué)術(shù)論文集[C];2011年
2 季維春;賈乃新;丁春雨;楊威;;積極推進(jìn)鹽堿地治理,確保糧食有效供給[A];2011年中國農(nóng)業(yè)資源與區(qū)劃學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2011年
3 張江輝;邱勝彬;吳肇基;;新疆鹽堿地改良與生態(tài)農(nóng)業(yè)[A];中國水利學(xué)會(huì)一九九九年優(yōu)秀論文集[C];1999年
4 張克強(qiáng);白成云;馬宏斌;張敬忠;牛斌;姜森林;;大同盆地金沙灘鹽堿地綜合治理技術(shù)開發(fā)研究[A];全面建設(shè)小康社會(huì)——中國科協(xié)二○○三年學(xué)術(shù)年會(huì)農(nóng)林水論文精選[C];2003年
5 陳自勝;徐安凱;;堿茅在“三北”地區(qū)重鹽堿地改良中的重要作用[A];西部大開發(fā) 科教先行與可持續(xù)發(fā)展——中國科協(xié)2000年學(xué)術(shù)年會(huì)文集[C];2000年
6 郭造強(qiáng);周玉林;張榮娟;謝自標(biāo);;河北省鹽堿地潛力分析及開發(fā)利用[A];2012年中國農(nóng)業(yè)資源與區(qū)劃學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2012年
7 徐安凱;樊奮成;;論堿茅在“三北”地區(qū)重鹽堿地改良中的作用[A];草業(yè)與西部大開發(fā)——草業(yè)與西部大開發(fā)學(xué)術(shù)研討會(huì)暨中國草原學(xué)會(huì)2000年學(xué)術(shù)年會(huì)論文集[C];2000年
8 史漢祥;史躍展;劉常勝;饒文軍;饒發(fā)玖;李述祖;;一種脫硫副產(chǎn)品在濱海鹽堿地改良中的應(yīng)用研究[A];燒結(jié)工序節(jié)能減排技術(shù)研討會(huì)文集[C];2009年
9 竇超銀;康躍虎;;地下水淺埋區(qū)重度鹽堿地覆膜咸水滴灌水鹽動(dòng)態(tài)試驗(yàn)研究[A];紀(jì)念中國農(nóng)業(yè)工程學(xué)會(huì)成立30周年暨中國農(nóng)業(yè)工程學(xué)會(huì)2009年學(xué)術(shù)年會(huì)(CSAE 2009)論文集[C];2009年
10 周沛云;;新疆鹽堿地棗林治理改良技術(shù)[A];第四屆全國干果生產(chǎn)、科研進(jìn)展研討會(huì)論文集[C];2005年
相關(guān)重要報(bào)紙文章 前10條
1 記者 志恒;專家對(duì)我區(qū)兩大流域鹽堿地改良利用規(guī)劃報(bào)告進(jìn)行“會(huì)診”[N];喀什日?qǐng)?bào)(漢);2007年
2 見習(xí)記者 豐開罡;我市改良鹽堿地讓2萬群眾受惠[N];朔州日?qǐng)?bào);2008年
3 記者 范杉珊;我區(qū)提出4項(xiàng)鹽堿地改良核心技術(shù)[N];華興時(shí)報(bào);2008年
4 董峻;我國展開大面積鹽堿地農(nóng)業(yè)高效利用研究[N];東方城鄉(xiāng)報(bào);2009年
5 記者 張曄;2億畝沉睡的鹽堿地有望被喚醒[N];科技日?qǐng)?bào);2009年
6 見習(xí)記者 童彤;鹽堿地治理:技術(shù)是關(guān)鍵[N];中國經(jīng)濟(jì)時(shí)報(bào);2009年
7 ;鹽堿地農(nóng)業(yè)高效利用研究啟動(dòng)[N];南通日?qǐng)?bào);2009年
8 本報(bào)記者 王海濱;山西:鹽堿地上的豐產(chǎn)藍(lán)圖[N];科技日?qǐng)?bào);2010年
9 張丹丹;溫商巨資改造吉林鹽堿地種出有機(jī)大米[N];糧油市場(chǎng)報(bào);2011年
10 本報(bào)記者 杜偉靜 實(shí)習(xí)生 李小文 吳倚倫;挑戰(zhàn)“綠色禁地” 大慶鹽堿地飄出“稻花香”[N];大慶日?qǐng)?bào);2012年
相關(guān)博士學(xué)位論文 前6條
1 王耀琳;甘肅景泰鹽堿地枸杞林生態(tài)系統(tǒng)效益[D];蘭州大學(xué);2015年
2 殷小琳;濱海鹽堿地改良及造林技術(shù)研究[D];北京林業(yè)大學(xué);2012年
3 周學(xué)武;粉煤灰與污泥配施改良山東鄭路、華豐鹽堿地的實(shí)驗(yàn)研究[D];中國地質(zhì)大學(xué)(北京);2006年
4 谷曉巖;鹽堿地水稻地膜覆蓋栽培的增效作用與產(chǎn)量形成機(jī)制[D];中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2012年
5 李洋洋;集成光學(xué)與微波遙感蘇打鹽堿地水鹽含量反演方法研究[D];中國科學(xué)院研究生院(東北地理與農(nóng)業(yè)生態(tài)研究所);2014年
6 景峰;濱海泥質(zhì)鹽堿地鹽土造林技術(shù)研究[D];北京林業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 蘭嵐;晉北重度鹽堿地對(duì)植物生理效應(yīng)的影響[D];山西農(nóng)業(yè)大學(xué);2015年
2 范孔岳;核桃殼貼礫濾水管及其在土壤改良水平定向孔中的應(yīng)用研究[D];中國地質(zhì)大學(xué)(北京);2015年
3 李驍騰;河北省黃驊市鹽堿地宜耕評(píng)價(jià)研究[D];河北農(nóng)業(yè)大學(xué);2015年
4 周薇;Al_2(SO_4)_3和有機(jī)肥對(duì)蘇打鹽堿地水田的改良效果及其對(duì)鹽分運(yùn)移的影響[D];吉林農(nóng)業(yè)大學(xué);2015年
5 王雙磊;棉花秸稈還田對(duì)鹽堿地棉田土壤理化性質(zhì)和生物學(xué)特性的影響[D];山東農(nóng)業(yè)大學(xué);2015年
6 崔志忠;渭南市鹵陽湖鹽堿地綠化改良技術(shù)研究[D];西北農(nóng)林科技大學(xué);2015年
7 宋澤;肥料配施對(duì)鹽堿地水稻產(chǎn)量品質(zhì)的影響研究[D];黑龍江八一農(nóng)墾大學(xué);2016年
8 劉鐵軍;蘭州新區(qū)鹽堿地改良綠化技術(shù)研究[D];蘭州大學(xué);2016年
9 李廣艷;黃河灘鹽堿地苜蓿栽培區(qū)土壤特性及牧草品質(zhì)變化研究[D];西北農(nóng)林科技大學(xué);2016年
10 劉博洋;吉林省西部鹽堿土不同利用方式對(duì)土壤化學(xué)性質(zhì)的影響[D];吉林農(nóng)業(yè)大學(xué);2016年
本文編號(hào):2461548
本文鏈接:http://sikaile.net/kejilunwen/nykj/2461548.html