基于EM38-MK2干旱區(qū)薄膜覆蓋棉田土壤剖面電導率解譯研究
[Abstract]:Soil salinization is a phenomenon or process of accumulation of soluble salt in soil surface under the combined action of various natural environment factors and human activities. Soil salinization will worsen the physical and chemical properties of soil, weaken and destroy the land productivity, reduce the availability of soil nutrients, cause plant "physiological drought" and lead to death, and its serious consequences will directly threaten the ecology. Sustainable economic and social development With the rapid increase of global population and the increasing demand for food, farmland has become the key to the survival of human beings. However, the salinization of soil is one of the most serious land degradation problems faced by many countries in the world. Seriously restricting the productivity of agricultural land, has become a severe global ecological problem. In "Modern Agricultural Development Plan (2011-2015)", our country clearly put forward the goal and task of "strengthening agricultural science and technology", "vigorously promoting precision operation", "remote sensing monitoring, disaster early warning" in agricultural application. Therefore, soil salinization is one of the ecological problems that can not be ignored in the arid and semi-arid regions, and the relevant research on monitoring and warning of soil salinization in oasis is carried out. It is urgent to apply the research results of technical means suitable for regional development to the practice of agricultural development. In this paper, through the use of EM38-MK2 and hand-held GPS equipment, during the cotton germination in May, the electrical conductivity data of soil profile collected in the field are combined. The conductivity of soil profile of cotton field under typical film mulching in oasis research area of Yutian County was studied. The main conclusions of this paper are as follows: 1) on the basis of the apparent conductivity of 217 soil samples collected by EM38-MK2 conductometer, The characteristics of electrical conductivity distribution in cotton field were analyzed in detail by using geostatistical knowledge and ARCGIS software. The apparent conductivity in the north of the middle part of the field was the highest and the radiation decreased in other directions. Through sampling the soil at different depths and analyzing the EC1:5 data in the laboratory, the conductivity distribution of the soil section of each sampling site is analyzed. The change of the conductivity of the first kind of soil sample is analyzed. Both mean and median showed a tendency to decrease first and then increase. On the one hand, the salt in soil profile was washed down by flooding, which led to the accumulation of salt below 40cm, which resulted in the desalination of soil. The conductivity of the second kind of soil profile showed the same trend but the degree of change was weak, the upper layer was in the degree of slight salinization, and the bottom was in the degree of moderate salinization. The conductivity of the third and fourth types of soil profiles showed a more uniform change trend, and was in the condition of mild salinization and non-salinization. 2) after collecting the apparent conductivity data of different vertical models of different points by using EM38-MK2 conductance meter, On the basis of previous studies, four empirical interpretation models with EC1.0V,EC0.5V,EC1.0V EC0.5V and EC1.0V-EC0.5V as independent variables are constructed. The method of cross test is used to test the accuracy of four multivariate linear models. The results show that the prediction model with EC1.0V-EC0.5V as independent variable has the best overall effect. In addition, the linear response model based on the principle of physical electromagnetism is used to directly convert the apparent conductivity at different heights to obtain the conductivity data of soil profile. The results show that the accuracy of the method is not as good as that of the empirical model. The change trend of soil conductivity can be predicted, but the details of soil interlayer conductivity change can not be predicted effectively.
【學位授予單位】:新疆大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:S156.41
【共引文獻】
相關(guān)期刊論文 前10條
1 湯菊香,王振河,蘇長濤,朱紅霞;Mn~(2+)和Mo~(6+)對棉花種子發(fā)芽耐鹽性的影響[J];安徽農(nóng)業(yè)科學;2005年09期
2 胡勇;呂凱;;推進安徽酸性紅黃壤地區(qū)藍莓產(chǎn)業(yè)化發(fā)展芻議[J];安徽農(nóng)業(yè)科學;2006年10期
3 李卓熹;李曉卿;曾憲競;左余寶;;華北沖積平原農(nóng)業(yè)土壤容重空間變異性分析[J];安徽農(nóng)業(yè)科學;2008年19期
4 王永利;李保國;齊國輝;郭素萍;王秀玲;;不同年齡早實核桃園土壤N·P·K含量變化研究[J];安徽農(nóng)業(yè)科學;2009年11期
5 陳燁;連賓;;鉀素循環(huán)及其農(nóng)業(yè)利用[J];安徽農(nóng)業(yè)科學;2009年25期
6 蒲玉琳;龍高飛;劉世全;陳紅君;;西藏土壤有鋅含量及其影響因子分析[J];安徽農(nóng)業(yè)科學;2009年30期
7 施憲;王冬艷;李月芬;靳克;郭珍;;吉林西部土壤微量營養(yǎng)元素有效量及其影響因素[J];安徽農(nóng)業(yè)科學;2010年23期
8 范海榮;常連生;王洪海;顧欣燕;孫景翠;;昌黎縣葡萄溝土壤肥力綜合評價與對策研究[J];安徽農(nóng)業(yè)科學;2011年04期
9 魯艷紅;廖育林;羅尊長;聶軍;黃鐵平;夏海鰲;;湖南省晚稻施鉀效應及土壤速效鉀豐缺指標研究[J];安徽農(nóng)業(yè)科學;2011年06期
10 趙斌;吳獻花;吳斌;高衛(wèi)國;羅維佳;郭紅;彭廷純;高婷;劉忠霖;;不同土地利用類型下土壤養(yǎng)分在土壤剖面中的分布特征[J];安徽農(nóng)業(yè)科學;2011年36期
相關(guān)會議論文 前10條
1 單奇華;張建鋒;沈立銘;阮偉建;唐華軍;陳光才;;灘涂圍墾地生態(tài)防護林構(gòu)建技術(shù)[A];第十三屆中國科協(xié)年會第16分會場-沿海生態(tài)建設與城鄉(xiāng)人居環(huán)境學術(shù)研討會論文集[C];2011年
2 陳江濤;顏雄;;“百里茶廊”茶園土壤肥力質(zhì)量評價[A];湖南省茶葉學會2007年學術(shù)年會論文集[C];2007年
3 代東峰;徐金欣;姜同海;許靜;王德水;;東營市沿海地區(qū)農(nóng)業(yè)地質(zhì)特征[A];“華東六省一市地學科技論壇”論文專輯[C];2010年
4 牛香;魏江生;周梅;劉斌;;興安落葉松林下土壤有機質(zhì)的研究[A];2007自然科學學術(shù)論文(土壤肥料與農(nóng)業(yè)可持續(xù)發(fā)展)[C];2007年
5 李本銀;郝秀珍;王慎強;周東美;;長期肥料試驗及其對土壤和作物中微量元素含量的影響[A];江蘇耕地質(zhì)量建設論文集[C];2008年
6 錢鈞;丁華萍;吉訓鳳;林愛華;沙捷亞;;海安縣土壤養(yǎng)分分布狀況[A];江蘇耕地質(zhì)量建設論文集[C];2008年
7 林清火;林釗沐;羅微;茶正早;;氮肥品種對磚紅壤中NO_3~--N淋溶特征的影響[A];中國土壤學會第十一屆全國會員代表大會暨第七屆海峽兩岸土壤肥料學術(shù)交流研討會論文集(中)[C];2008年
8 楊佩珍;金繼運;王國忠;畢經(jīng)偉;;上海市耕地土壤養(yǎng)分空間變異研究[A];中國土壤學會第十一屆全國會員代表大會暨第七屆海峽兩岸土壤肥料學術(shù)交流研討會論文集(中)[C];2008年
9 楊苞梅;姚麗賢;張政勤;李國良;何兆桓;周昌敏;黃連喜;涂仕華;;廣西和福建兩省荔枝園土壤養(yǎng)分吸附特性研究[A];面向未來的土壤科學(下冊)——中國土壤學會第十二次全國會員代表大會暨第九屆海峽兩岸土壤肥料學術(shù)交流研討會論文集[C];2012年
10 陶由之;楊剛;;彭州市水田土壤有機質(zhì)近25年時空變異特征[A];四川省地質(zhì)學會核資源與核勘查工程專業(yè)委員會2013年學術(shù)交流會論文集[C];2013年
相關(guān)博士學位論文 前10條
1 劉杰;湘中南紅壤地區(qū)土壤質(zhì)量特征與退化紅壤的肥力調(diào)控技術(shù)研究[D];湖南農(nóng)業(yè)大學;2010年
2 姜麗娜;低覆蓋度行帶式固沙林促進帶間土壤、植被修復效應的研究[D];內(nèi)蒙古農(nóng)業(yè)大學;2011年
3 李翠蘭;長春市綠地鉛污染評價及其植物修復研究[D];吉林農(nóng)業(yè)大學;2011年
4 王玲;基于GIS和RS的干旱區(qū)綠洲耕地質(zhì)量評價方法及應用研究[D];石河子大學;2011年
5 王惠珍;當歸產(chǎn)量和品質(zhì)形成對海拔的響應及生理機制[D];甘肅農(nóng)業(yè)大學;2011年
6 朱紅霞;太湖地區(qū)典型農(nóng)田土壤氮磷時空變異及對水環(huán)境的影響研究[D];南京農(nóng)業(yè)大學;2011年
7 怓超普;不同空間尺度區(qū)域氮素收支[D];南京農(nóng)業(yè)大學;2011年
8 劉方;黃壤旱坡地磷積累、遷移及其環(huán)境影響評價[D];浙江大學;2002年
9 劉鳴達;水稻土供硅能力評價方法及水稻硅素肥料效應的研究[D];沈陽農(nóng)業(yè)大學;2002年
10 劉忠華;阿月渾子在我國適生區(qū)域的研究[D];北京林業(yè)大學;2003年
相關(guān)碩士學位論文 前10條
1 姬翠翠;基于遙感和GIS的三北地區(qū)水土流失動態(tài)監(jiān)測研究[D];遼寧工程技術(shù)大學;2009年
2 耿慧;張宣葡萄產(chǎn)區(qū)土壤銅、鋅分布特征及與葡萄品質(zhì)的關(guān)系[D];河北農(nóng)業(yè)大學;2011年
3 白妙妮;基于GIS的縣域耕地地力評價的研究[D];西北大學;2011年
4 方偉東;長白山地區(qū)四種森林類型土壤理化性質(zhì)及水源涵養(yǎng)功能[D];北京林業(yè)大學;2011年
5 白鵬莉;能源植物曼陀羅耐鹽性的初步研究[D];遼寧師范大學;2011年
6 劉東海;縣域尺度農(nóng)田養(yǎng)分空間變異與肥力綜合評價[D];中國農(nóng)業(yè)科學院;2011年
7 賈興永;土壤性質(zhì)對外源磷化學有效性及吸附解吸的影響研究[D];中國農(nóng)業(yè)科學院;2011年
8 黃仲冬;基于SWAT模型的灌區(qū)農(nóng)田退水氮磷污染模擬及調(diào)控研究[D];中國農(nóng)業(yè)科學院;2011年
9 余偉;油茶生態(tài)栽培模式和林下養(yǎng)分動態(tài)的研究[D];福建農(nóng)林大學;2011年
10 線琳;豆科綠肥對磚紅壤磷、鉀含量影響的研究[D];海南大學;2011年
,本文編號:2356430
本文鏈接:http://sikaile.net/kejilunwen/nykj/2356430.html