作物根區(qū)土壤水分垂向調(diào)控與蒸發(fā)蒸騰量估算
[Abstract]:Local root water stress can regulate crop yield and quality and improve water use efficiency. The realization of water saving effect needs spatial distribution difference of soil water in horizontal or vertical. Soil moisture is an important factor affecting crop evapotranspiration, and its spatial distribution will also affect crop evapotranspiration estimation. In this study, spring wheat in Shiyang River Basin was used to control the upper and lower limits of irrigation and the depth of wet layer in different growth stages to realize vertical regulation of soil moisture in root zone, and its effect was discussed. Based on RZWQM model, the upper limit of irrigation and the depth of wet layer in different growth periods were optimized to maximize the benefit of water saving. The effect of spatial distribution of soil moisture on crop evapotranspiration estimation caused by the difference of irrigation amount in spring maize in Shiyang River Basin was studied. The main achievements of this paper are as follows: (1) the soil moisture distribution and crop root distribution can be regulated by controlling the depth of the wet layer in different growth stages, and the vertical control measures are mainly in the 0~60cm soil layer. The soil moisture content and root length density of 40~60cm soil were the most significantly affected. There was little difference in yield among different irrigation treatments, but there was great difference in the amount of irrigation needed and there was water saving space. (2) RZWQM model could accurately simulate the soil moisture movement and crop growth process of spring wheat in Shiyang River Basin. It can be used to optimize irrigation system. The effects of upper limit of irrigation and depth of wet layer in different growth stages on grain yield, irrigation amount, irrigation water utilization efficiency and irrigation times of spring wheat were simulated by using the model. The results showed that the effect of irrigation upper limit on irrigation quantity was much greater than on yield, and the decrease of irrigation upper limit would increase irrigation times and increase wheat yield. The aim of saving water and increasing yield can be achieved by regulating irrigation upper limit and the depth of wet layer in each growth stage. It is suggested that the irrigation schedule of spring wheat in this area should be as follows: the upper limit of irrigation water should be chosen as 80% field water holding capacity. The planned wet layer depth of seedling stage to jointing stage is 30 cm, that of jointing stage to heading stage is 60 cm, that of heading stage to filling stage is 50 cm, and that of planned wet layer is 70 cm at filling stage and mature stage. (3) under different irrigation treatments, the depth of wet layer is 70 cm. The estimation accuracy of crop evapotranspiration is quite different. With the increase of irrigation amount, the estimation accuracy of crop evapotranspiration was decreased, and the estimation error of crop evapotranspiration under high irrigation treatment was -14.13%. The water content of the upper layer of the root zone is closely related to the soil water stress. The average water content of the soil layer and above is replaced by the average value of the water content of the whole root zone for the calculation of soil water stress coefficient. The calculation accuracy of crop evapotranspiration under high irrigation treatment can be improved effectively, and the estimation error can be reduced to -9.97, and the crop evapotranspiration under low irrigation treatment can be estimated more accurately.
【學位授予單位】:西北農(nóng)林科技大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:S152.7;S311
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 楊映才;;作物蒸發(fā)蒸騰量簡析[J];甘肅農(nóng)業(yè);2006年11期
2 陳佩英;殷廣亞;宋玉民;甄軍英;李偉;孫巖;;臨潁參考作物蒸發(fā)蒸騰量計算及對比分析[J];河南氣象;2006年04期
3 聶振平;湯波;;作物蒸發(fā)蒸騰量測定與估算方法綜述[J];安徽農(nóng)學通報;2007年02期
4 冀瑞鋒;;作物蒸發(fā)蒸騰量研究[J];科技情報開發(fā)與經(jīng)濟;2009年10期
5 康紹忠;邵明安;;作物蒸發(fā)蒸騰量的計算方法研究[J];中國科學院水利部西北水土保持研究所集刊(SPAC中水分運行與模擬研究專集);1991年01期
6 南紀琴;肖俊夫;劉戰(zhàn)東;陶國通;蘇星;;河南地區(qū)不同年代不同季節(jié)參考作物蒸發(fā)蒸騰量研究[J];灌溉排水學報;2013年05期
7 王衛(wèi)華;邢旭光;吳忠東;蹇洪勝;;作物蒸發(fā)蒸騰量計算方法研究與展望[J];安徽農(nóng)業(yè)科學;2013年28期
8 彭世彰,徐俊增;參考作物蒸發(fā)蒸騰量計算方法的應(yīng)用比較[J];灌溉排水學報;2004年06期
9 吳宏霞;彭世彰;徐俊增;;參考作物蒸發(fā)蒸騰量計算簡化方法[J];中國農(nóng)學通報;2005年12期
10 李彥,陳祖森,張保,王建山;參考作物蒸發(fā)蒸騰量的多元線性回歸模型研究[J];新疆農(nóng)業(yè)大學學報;2005年01期
中國重要會議論文全文數(shù)據(jù)庫 前6條
1 徐俊增;彭世彰;張瑞美;吳宏霞;;參考作物蒸發(fā)蒸騰量隨緯度與海拔的變化規(guī)律研究[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國農(nóng)業(yè)工程學會學術(shù)年會論文集第二分冊[C];2005年
2 孫慶宇;佟玲;張寶忠;;京津冀地區(qū)多種參考作物蒸發(fā)蒸騰量計算方法適用性探索[A];現(xiàn)代節(jié)水高效農(nóng)業(yè)與生態(tài)灌區(qū)建設(shè)(上)[C];2010年
3 佟玲;康紹忠;楊秀英;粟曉玲;;石羊河流域參考作物蒸發(fā)蒸騰量空間分布規(guī)律的研究[A];中國農(nóng)業(yè)工程學會農(nóng)業(yè)水土工程專業(yè)委員會第三屆學術(shù)研討會論文集[C];2004年
4 霍再林;史海濱;李為萍;佟長福;徐冰;;參考作物蒸發(fā)蒸騰量的人工神經(jīng)網(wǎng)絡(luò)模型研究[A];中國農(nóng)業(yè)工程學會農(nóng)業(yè)水土工程專業(yè)委員會第三屆學術(shù)研討會論文集[C];2004年
5 張曉濤;康紹忠;;基于SEBAL模型的民勤綠洲蒸發(fā)蒸騰量的遙感估算[A];現(xiàn)代節(jié)水高效農(nóng)業(yè)與生態(tài)灌區(qū)建設(shè)(上)[C];2010年
6 龔道枝;康紹忠;張建華;姚立民;;蘋果樹蒸發(fā)蒸騰量的測定和計算[A];中國農(nóng)業(yè)工程學會農(nóng)業(yè)水土工程專業(yè)委員會第三屆學術(shù)研討會論文集[C];2004年
中國博士學位論文全文數(shù)據(jù)庫 前3條
1 杜少卿;西北旱區(qū)分根交替灌溉蘋果樹水分利用及蒸發(fā)蒸騰量估算研究[D];中國農(nóng)業(yè)大學;2017年
2 吳堯;科爾沁沙丘—草甸相間地區(qū)植被蒸發(fā)蒸騰量變化規(guī)律研究[D];內(nèi)蒙古農(nóng)業(yè)大學;2014年
3 蘇春宏;參考作物蒸發(fā)蒸騰量(ET_0)的初步檢驗實驗及輸入因子的響應(yīng)分析研究[D];內(nèi)蒙古農(nóng)業(yè)大學;2006年
中國碩士學位論文全文數(shù)據(jù)庫 前10條
1 薛璐;陜西關(guān)中地區(qū)ET0時空變化及簡化計算方法的適用性[D];西北農(nóng)林科技大學;2015年
2 劉文艷;參考作物蒸發(fā)蒸騰量主成分和多重分形分析[D];西北農(nóng)林科技大學;2016年
3 宇宙;赤峰市膜下滴灌玉米蒸發(fā)蒸騰量及灌水量空間分布研究[D];內(nèi)蒙古師范大學;2016年
4 趙紅光;自然和人工條件下作物蒸發(fā)蒸騰量(ET)的研究[D];太原理工大學;2017年
5 戰(zhàn)國隆;參考作物蒸發(fā)蒸騰量簡化計算與預(yù)測模型研究[D];西北農(nóng)林科技大學;2010年
6 張曉濤;區(qū)域蒸發(fā)蒸騰量的遙感估算[D];西北農(nóng)林科技大學;2006年
7 康燕霞;波文比和蒸滲儀測量作物蒸發(fā)蒸騰量的試驗研究[D];西北農(nóng)林科技大學;2006年
8 程玉菲;黑河干流中游平原作物蒸發(fā)蒸騰量時空分布研究[D];蘭州大學;2007年
9 佟玲;石羊河流域作物蒸發(fā)蒸騰量時空分異規(guī)律的研究[D];西北農(nóng)林科技大學;2004年
10 樊引琴;作物蒸發(fā)蒸騰量的測定與作物需水量計算方法的研究[D];西北農(nóng)林科技大學;2001年
,本文編號:2274645
本文鏈接:http://sikaile.net/kejilunwen/nykj/2274645.html