天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

省域尺度土壤有機質空間分布的神經網絡法預測

發(fā)布時間:2018-10-04 22:23
【摘要】:土壤有機質空間分布預測方法研究對指導省域尺度下土壤有機質空間插值模型選取和精度優(yōu)化具有重要意義。以江西省為例,利用BP神經網絡模型與普通克里金結合的方法(BPNN-OK)、RBF神經網絡模型與普通克里金結合的方法(RBFNN-OK)以及普通克里金法(OK)3種方法,預測省域尺度下耕地表層(0~20 cm)土壤有機質的空間分布。16 109個土壤樣點隨機分成12 887個建模樣點,3 222個測試樣點。結果表明:在省域尺度下,BPNN-OK法、RBFNN-OK法較OK法在土壤有機質空間預測精度上有較大提升,三者的預測精度為BPNN-OKRBFNN-OKOK。BPNN-OK法對土壤有機質預測結果的均方根誤差、平均絕對誤差、平均相對誤差較OK法分別降低28.66%、30.71%、34.76%,RBFNN-OK法較OK法分別降低27.76%、29.74%、33.71%。在省域尺度下,神經網絡模型與普通克里金結合的方法能很好地捕捉土壤有機質的復雜空間變異關系。研究結果可指導江西省土壤有機質空間插值模型選取。
[Abstract]:The prediction method of soil organic matter spatial distribution is of great significance to guide the spatial interpolation model selection and precision optimization of soil organic matter in provincial scale. Taking Jiangxi Province as an example, using the BP neural network model and the ordinary Kriging method (BPNN-OK), there are three methods, the RBFNN-OK method and the (OK) method, which are combined with the common Kriging neural network model and the common Kriging neural network model, respectively. The spatial distribution of soil organic matter on the surface of cultivated land (0 ~ 20 cm) was predicted. 16 109 soil samples were randomly divided into 12 887 pattern sites and 3 222 test sites. The results showed that the precision of spatial prediction of soil organic matter by BPNN-OK method was much higher than that by OK method at the provincial scale. The accuracy of the three methods was the root mean square error and the average absolute error of BPNN-OKRBFNN-OKOK.BPNN-OK method for soil organic matter prediction. The average relative error was decreased by 28.660.71% and 34.76% respectively compared with the OK method. The RBFNN-OK method was 27.76% lower than the OK method (29.74%) and 33.71% lower than that of the OK method. On the provincial scale, the neural network model combined with the ordinary Kriging method can capture the complex spatial variability of soil organic matter. The results can guide the selection of spatial interpolation model of soil organic matter in Jiangxi Province.
【作者單位】: 江西農業(yè)大學國土資源與環(huán)境學院/江西省鄱陽湖流域農業(yè)資源與生態(tài)重點實驗室;南方糧油作物協同創(chuàng)新中心;
【基金】:國家自然科學基金項目(41361049) 江西省自然科學基金項目(20122BAB204012) 江西省贛鄱英才“555”領軍人才項目(201295)
【分類號】:S153.621

【相似文獻】

相關期刊論文 前4條

1 魏周會;龔少紅;馮小明;;作物產量預測的時間序列神經網絡模型[J];節(jié)水灌溉;2006年06期

2 米湘成,馬克平,鄒應斌;人工神經網絡模型及其在農業(yè)和生態(tài)學研究中的應用[J];植物生態(tài)學報;2005年05期

3 李容物,劉金福;七里街水文站實時洪水預報神經網絡模型[J];福建林學院學報;1999年04期

4 任承輝,楊學震,洪雙旌,陳明華;利用神經網絡理論實現對水土流失快速遙感監(jiān)測[J];中國水土保持;2000年02期

,

本文編號:2252105

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/nykj/2252105.html


Copyright(c)文論論文網All Rights Reserved | 網站地圖 |

版權申明:資料由用戶de1e5***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com