土壤濕度地面觀測數(shù)據(jù)處理方法研究
[Abstract]:Soil moisture is a kind of important surface environmental variable. It is very important to obtain high quality regional soil moisture data for scientific research and production practice. The traditional soil moisture data is based on ground site monitoring, which has the advantages of high precision, good time continuity, but poor spatial continuity. In order to obtain soil moisture data with high accuracy and spatial continuity, the soil moisture time series data of several spatial points obtained from ground observation are used in this paper. The experimental area is Yingke / Daoman irrigation area in the middle reaches of Heihe River. The spatial analysis of soil moisture in this area was carried out, and the spatial interpolation method and time series data prediction method of soil moisture were studied. The main work is as follows: 1. The spatial heterogeneity analysis of soil moisture includes three aspects: statistical analysis, variation analysis and autocorrelation analysis. In order to understand the spatial heterogeneity of the experimental area, for the following experiments as a comparison and reference, this paper respectively through the numerical statistical analysis to understand the data layout and variability; model fitting and residual size as the test index, Selecting the appropriate variation model, using variation analysis to analyze the spatial structure characteristics of regionalized variables, calculating the global autocorrelation Moran's I coefficient of soil moisture, and calculating the results through Z test. To test whether the soil moisture observation point with spatial position is significantly related to the observed value of its adjacent observation points. Based on the superposition theory, a soil moisture interpolation method considering spatial and temporal characteristics is established according to the basic theory of signal superposition. The signal can be decomposed into non-coincidence parts, and the original data can be reconstructed after processing. Based on the superposition theory and wavelet decomposition method, the soil moisture time series data are decomposed to obtain the low frequency part and the residual part. (HASM) and variable function are used to interpolate the two parts respectively. By fitting the interpolation results, the interpolation results with high precision are obtained. A soil moisture time series prediction method based on improved BP neural network is established to solve the problem that the convergence rate of ordinary BP neural networks is slow and is prone to fall into local optimum. An improved method of BP neural network based on momentum factor and adaptive learning rate is proposed, and the initial threshold and weight of BP neural network are optimized by particle swarm optimization (PSO). Aiming at the problem of linear decline of inertia weight in standard particle swarm optimization (PSO), slow convergence speed of PSO caused by learning factor taking constant, and easy missing global optimal solution, the iterative times and fitness value are combined to improve inertia weight and learning factor. The speed of finding the global optimal solution is improved effectively.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:S152.71
【參考文獻】
相關(guān)期刊論文 前10條
1 李雨鴻;孫倩倩;李輯;李晶;劉維;李琳琳;陶蘇林;;東北地區(qū)春播期土壤水分預(yù)測方法研究[J];干旱地區(qū)農(nóng)業(yè)研究;2015年06期
2 徐英;夏冰;;綜合BME和BNN法的農(nóng)田土壤水分與養(yǎng)分分布空間插值[J];農(nóng)業(yè)工程學(xué)報;2015年16期
3 萬曙靜;張承明;馬靖;;微波遙感反演地表土壤含水量的方法研究[J];山東農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版);2015年02期
4 楊勇;梅楊;張楚天;張若兮;廖祥森;;基于時空克里格的土壤重金屬時空建模與預(yù)測[J];農(nóng)業(yè)工程學(xué)報;2014年21期
5 孫倩倩;劉晶淼;梁宏;;東北地區(qū)土壤濕度的區(qū)域性預(yù)報模型研究[J];自然資源學(xué)報;2014年06期
6 趙明偉;岳天祥;趙娜;;高精度曲面建模優(yōu)化方案[J];中國圖象圖形學(xué)報;2014年02期
7 李小濤;黃詩峰;宋小寧;馬建威;;衛(wèi)星遙感結(jié)合地面觀測數(shù)據(jù)的土壤墑情監(jiān)測分析系統(tǒng)[J];水利學(xué)報;2013年S1期
8 王紅梅;王仲良;王X;陳歡;劉安樂;;華北農(nóng)牧交錯帶農(nóng)田-草地景觀鑲嵌體土壤水分空間異質(zhì)性[J];生態(tài)學(xué)報;2013年19期
9 肖緒培;宋乃平;謝騰騰;王興;楊明秀;;荒漠草原區(qū)不同土地利用類型土壤水分時空特征[J];生態(tài)與農(nóng)村環(huán)境學(xué)報;2013年04期
10 韓焱紅;矯梅燕;陳靜;陳法敬;;基于貝葉斯理論的集合降水概率預(yù)報方法研究[J];氣象;2013年01期
相關(guān)博士學(xué)位論文 前1條
1 胡紅英;局域波分解方法、特征剖析及應(yīng)用研究[D];大連理工大學(xué);2006年
相關(guān)碩士學(xué)位論文 前3條
1 周禹瑩;大慶市大同區(qū)土壤養(yǎng)分空間異質(zhì)性分析[D];哈爾濱師范大學(xué);2015年
2 張宇;不同載畜率下荒漠草原土壤水分空間異質(zhì)性的研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2014年
3 吳維臻;坡面尺度土壤水分空間異質(zhì)性特征及其與地形因子的關(guān)系[D];蘭州大學(xué);2014年
,本文編號:2227511
本文鏈接:http://sikaile.net/kejilunwen/nykj/2227511.html