多尺度分割的作物長(zhǎng)勢(shì)參數(shù)反演研究
[Abstract]:In order to achieve real-time, non-destructive monitoring of the overall growth of crops at the regional scale, In this paper, the CASI aeronautical observation data and ground measured data obtained from the large-scale satellite-machine-ground remote sensing experiment carried out in the Heihe River Basin from June to July 2012 are taken as the main data sources, and the eCognition image processing software is used as the platform. Using multi-scale segmentation technology to extract information from hyperspectral remote sensing image, and then to study the inversion of growth parameter LAI,Cab,N. The purpose of this paper is to discuss and analyze the effect of object-oriented multi-scale segmentation on the inversion of hyperspectral remote sensing crop growth parameters. In order to obtain some new achievements and experiences about the application of hyperspectral data in agriculture in theory and method. This paper mainly focuses on the following three aspects: firstly, based on the object-oriented multi-scale segmentation technology, combined with visual interpretation and step by step trial and error method, the optimal segmentation scale parameters are selected under the evaluation index of relative regional overlap degree. That is, the weight factor of each band is 1, the weight of shape factor is 0.4, the tightness is 0.5, and the scale of segmentation is 70. Secondly, on the basis of considering the characteristics of CASI images and previous studies, the relationship between crop growth parameters and vegetation index was analyzed. A multivariate linear remote sensing estimation model composed of vegetation indices with good inversion ability and stability was established. Finally, according to the characteristics of the object oriented multi-scale segmented image and the inversion model of crop growth parameters in accordance with the actual situation in the study area, In this paper, two experimental schemes, the first segmentation and then inversion, and the first inversion and segmentation, are compared and analyzed, and the remote sensing monitoring of the whole crop growth on the regional scale is realized. The results show that the results of first segmentation and then inversion are superior to those of the first inversion and then the segmentation method. The model estimation accuracy of LAI,Cab,N not only reaches more than 80%, but also the determination coefficient R2 has passed the significance test of 0.95 reliability level. It fully demonstrates the unique advantages of object-oriented multi-scale segmentation technology in crop parameter inversion, which makes the inversion results for the whole field crop more objective, accurate and universal. The hyperspectral remote sensing image can effectively extract crop growth information from large area and large area.
【學(xué)位授予單位】:遼寧工程技術(shù)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:S127
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳春波;周寶同;田永中;陳正龍;高凡;;環(huán)境一號(hào)衛(wèi)星多光譜數(shù)據(jù)在巢湖藍(lán)藻動(dòng)態(tài)監(jiān)測(cè)中的應(yīng)用[J];中國(guó)環(huán)境監(jiān)測(cè);2014年01期
2 王莉雯;衛(wèi)亞星;;植被氮素濃度高光譜遙感反演研究進(jìn)展[J];光譜學(xué)與光譜分析;2013年10期
3 房賢一;朱西存;王凌;趙庚星;;基于高光譜的蘋(píng)果盛果期冠層葉綠素含量監(jiān)測(cè)研究[J];中國(guó)農(nóng)業(yè)科學(xué);2013年16期
4 李鑫川;徐新剛;鮑艷松;黃文江;羅菊花;董瑩瑩;宋曉宇;王紀(jì)華;;基于分段方式選擇敏感植被指數(shù)的冬小麥葉面積指數(shù)遙感反演[J];中國(guó)農(nóng)業(yè)科學(xué);2012年17期
5 李新;劉紹民;馬明國(guó);肖青;柳欽火;晉銳;車(chē)濤;王維真;祁元;李弘毅;朱高峰;郭建文;冉有華;聞建光;王樹(shù)果;;黑河流域生態(tài)—水文過(guò)程綜合遙感觀測(cè)聯(lián)合試驗(yàn)總體設(shè)計(jì)[J];地球科學(xué)進(jìn)展;2012年05期
6 邢著榮;馮幼貴;李萬(wàn)明;王萍;楊貴軍;;高光譜遙感葉面積指數(shù)(LAI)反演研究現(xiàn)狀[J];測(cè)繪科學(xué);2010年S1期
7 劉志;沈禮權(quán);張兆楊;;基于二叉劃分樹(shù)的多尺度圖像分割算法[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2009年09期
8 韓鵬;龔健雅;;遙感尺度選擇問(wèn)題研究進(jìn)展[J];遙感信息;2008年01期
9 雷茹萍;蔣立輝;;紋理圖像的多尺度分割[J];電腦知識(shí)與技術(shù)(學(xué)術(shù)交流);2007年14期
10 王紀(jì)華;黃文江;勞彩蓮;張錄達(dá);羅長(zhǎng)兵;王韜;劉良云;宋曉宇;馬智宏;;運(yùn)用PLS算法由小麥冠層反射光譜反演氮素垂直分布[J];光譜學(xué)與光譜分析;2007年07期
,本文編號(hào):2225983
本文鏈接:http://sikaile.net/kejilunwen/nykj/2225983.html