斜紋夜蛾與棉鈴蟲化感基因鑒定及受體功能分析
[Abstract]:As the largest species and number of organisms on earth, insects have developed a highly sensitive olfactory receptor system during their long evolutionary process to sense complex odor compounds in the environment, thus completing important behavioral activities such as spouse-seeking, food-spawning, and escape from natural enemies. From the point of view of application, the long-term use of chemical pesticides in pest control in China has not only resulted in resistance to pests and reduced control effect, but also caused serious potential safety hazards to the environment and human life and caused special attention. It is urgent to develop more environmentally friendly and safer pest control techniques. Sexual attractants based on highly specific pheromone communication between the sexes of insects have been successfully applied to the control of some pests, but the overall effect is still not as expected, mainly because the olfactory mechanism of insect sex pheromones or other odorants is not well understood. Recognition involves multiple proteins, such as odor binding protein (OBP), chemosensory protein (CSP), odor receptor (OR), ionic receptor (IR), sensory neuron membrane protein (SNMP) and odor degrading enzyme (Odorant degrading enzym). Further study on the functions of these genes and their mechanisms in odor recognition will undoubtedly contribute to the development of more efficient pest control techniques. This study focused on the important agricultural pests Spodoptera litura and Helicoverpa armigera, combining molecular biology, bioinformatics and electricity. The main results are as follows: 1. Cloning, expression and function study of sex pheromone receptor gene of Spodoptera litura. According to the functional differences, OR can be divided into sex pheromone receptor (PR) and non-sex pheromone receptor (non-p receptor). Hermone receptor (non-PR OR). According to the four PR genes reported by Spodoptera littoralis, four PR gene fragments were cloned and identified from the antennae of male Spodoptera littoralis, and their full-length cDNA sequences were obtained by RACE, named SlituOR6 (Genbank login number: KC188666), SlituOR11 (KC1). The expression profiles of SlituOR13 (KC188668) and Slituor16 (KC188669) showed that four PRs were mainly expressed in antennae, SlituOR6 and Slituor13 were specifically expressed in antennae of male worms, and SlituOR11 and Slituor16 were highly expressed in antennae of male worms. The specific reactions of tuOR6 to secondary pheromone components Z9, E12-14:OAc (ECu (50) = = 1.99 *10 ~ (-6) M); SlituOR13 to secondary pheromone components Z9, E12-14:OAc (EC_ (50) = = 6.109 *10 ~ (-6) M) and Z9-14:OAc (EC_ (50) = = 1.109 (50) =1.184 10 ~ (-6) M) M) were relatively strong, but slight reactto major phercomponents Z9, E11 1 1 1 1 1 1 1 1 1 1-14:14:OAc (14:OA1: OA (50) =6: OA (50) =6: OA (EC_moth line The results provide an important basis for understanding the sensory mechanism of sex pheromone in Spodoptera litura. 2. Cloning, expression, localization and function of the common odor receptor gene of Spodoptera litura. We cloned four non-PR OR fragments from the antennae of Spodoptera litura by designing specific primers according to the reported OR sequence, and then obtained the full-length cDNA sequences by RACE, named SlituOR12 (Genbank login: JX999588), SlituOR19 (JX999589), SlituOR44 (JX99958). 7) and SlituOR51 (JX999586). Tissue expression profiles showed that the four ORs were expressed in the antennae. In situ hybridization experiments showed that SlituOR12 was expressed in the long hairy, short hairy and pyramidal sensilla, consistent with the olfactory function of sensilla. The results showed that SlituOR12 specifically recognized the plant volatile cis-3-hexenyl acetate (EC_ (50) = 3.393 *10-7M), SlituOR19 had a weak response to 4'-ethylacetophenone, but SlituOR44 and Slituor51 did not respond to all the detected odors. 3. Cloning and localization of the membrane protein gene of the sensory neurons of Spodoptera litura is a membrane protein, which has been proved to be essential in the sensory pheromone of Drosophila melanogaster. We cloned and identified two SNMP bases from the antennae of Spodoptera litura by PCR. The two SNMPs were named SlituSNMP1 (GenBank login number: KC571258) and SlituSNMP2 (KC571259). Evolutionary analysis showed that the two SNMPs belonged to SNMP1 and SNMP2 subgroups, respectively. In situ hybridization was used to localize the distribution of the two genes in the sensilla of male antennae. SlituSNMP1 was expressed in the neurons under the trichomes, while SlituSNMP2 was expressed in the surrounding columnar cells. In order to better understand the olfactory recognition mechanism of Helicoverpa armigera, we used Illumina HiSeqTM 2000 high-throughput sequencing platform to sequence the cotton bollworm antennae, and found 15 OR, 7 IR, 8. A total of 133 olfactory genes, including 60 OR, 19 IR, 2 SNMP, 34 OBP and 18 CSP, were identified in the antennae of Helicoverpa armigera, including 454 sequencing results reported in our laboratory. The identification of these genes laid an important foundation for the comprehensive elucidation of the olfactory mechanism of Helicoverpa armigera, and for the further adoption of sister species of tobacco. The comparative analysis of caterpillars provided important basis for revealing the mechanism of feeding differentiation between the two insects. 5. The expression profiles and functional analysis of odor receptor genes in Helicoverpa armigera were carried out on the basis of transcriptome sequencing and OR identification. The functions of these ORs were further studied. Firstly, all identified ORs were identified by RT-PCR. The results of tissue expression profiles showed that 28 OR genes were expressed in the antennae and antennae of adult worms, 2 were larvae-specific, and the rest were only expressed in the antennae of adult worms. Physical reactions showed that seven ORs (OR7, 8, 23, 26, 27, 34 and 43) had very narrow odor binding spectra and reacted only to 2-4 odor compounds; four ORs (OR31, 35, 40 and 42) had wide binding spectra and reacted to more than five odors; one did not react to the detected odor compounds. To sum up, eight OR (four PR and four non-PR OR) and two SNMPs were cloned from the antennae of Spodoptera litura by using molecular biology, bioinformatics and electrophysiological recording techniques. The tissue expression characteristics of these genes were determined and their functions were further identified. The results provide important basis for elucidating the olfactory molecular mechanism of sex pheromones and plant volatiles in Spodoptera litura and Helicoverpa armigera, and for designing and developing effective behavioral attractants and mating interference in moths. The agent provides support.
【學(xué)位授予單位】:南京農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2015
【分類號】:S433.4
【相似文獻】
相關(guān)期刊論文 前10條
1 吳雙林;檳榔芋斜紋夜蛾的發(fā)生及防治[J];蔬菜;2000年05期
2 葉敬用;斜紋夜蛾實用防治技術(shù)[J];江西園藝;2002年03期
3 劉定忠;棉田斜紋夜蛾上升為害的主導(dǎo)原因淺析[J];江西棉花;2003年01期
4 吳傳偉,趙敏,馬立強;斜紋夜蛾為害梨樹的新動向[J];中國植保導(dǎo)刊;2004年12期
5 鐘菊蓮 ,李虹 ,朱永勝;斜紋夜蛾在棉田暴發(fā)的原因及防治技術(shù)[J];江西棉花;2005年04期
6 萬玉群,黃巧云,羅品忠;芋頭生產(chǎn)上斜紋夜蛾的發(fā)生與防治[J];上海農(nóng)業(yè)科技;2005年05期
7 黃巧云,常秋紅,羅品忠;芋頭斜紋夜蛾的發(fā)生與防治[J];現(xiàn)代農(nóng)業(yè)科技;2005年04期
8 葉慶榮;;仙景芋斜紋夜蛾發(fā)生測報及防治技術(shù)[J];福建農(nóng)業(yè)科技;2006年02期
9 李群;;警惕斜紋夜蛾暴發(fā)成災(zāi)[J];農(nóng)藥市場信息;2006年13期
10 楊喬良;;蓮田斜紋夜蛾發(fā)生與防治[J];福建農(nóng)業(yè);2007年09期
相關(guān)會議論文 前10條
1 謝圣華;林珠鳳;吉訓(xùn)聰;周傳波;梁延坡;;挑治技術(shù)在斜紋夜蛾綜合治理中的應(yīng)用[A];糧食安全與植保科技創(chuàng)新[C];2009年
2 宋秀高;;斜紋夜蛾暴發(fā)的原因與防治技術(shù)[A];第十九屆全國植保信息交流暨農(nóng)藥械交易會論文集[C];2003年
3 李國榮;王玉美;張勝昔;華金平;;斜紋夜蛾—不容忽視的棉田害蟲[A];中國棉花學(xué)會2004年年會論文匯編[C];2004年
4 孫挺舉;房德文;朱琴高;;斜紋夜蛾的發(fā)生規(guī)律與防治措施[A];中國蠶學(xué)會第七屆二次理事會暨學(xué)術(shù)年會論文集[C];2005年
5 陳亮;李兵;浦冠勤;;斜紋夜蛾產(chǎn)生抗藥性的原因及其防治對策[A];中國蠶學(xué)會桑樹病蟲害防治學(xué)術(shù)研討會論文集[C];2008年
6 浦冠勤;姜德義;王軍;;警惕斜紋夜蛾的發(fā)生與危害[A];中國蠶學(xué)會桑樹病蟲害防治學(xué)術(shù)研討會論文集[C];2008年
7 劉德文;劉雄;諶超賢;;斜紋夜蛾暴發(fā)原因分析及防治[A];第二十一屆全國農(nóng)藥械“雙交會”論文集[C];2005年
8 李社平;向錦曾;;斜紋夜蛾微粒子蟲的初步研究[A];北京昆蟲學(xué)會成立四十周年學(xué)術(shù)討論會論文摘要匯編[C];1990年
9 ;三葉草坪斜紋夜蛾的發(fā)生和防治策略[A];2006年江蘇省病蟲防治綠皮書[C];2006年
10 林莉;何成興;戴勛;溫麗娜;田育天;胡保文;常劍;吳文偉;趙文軍;夏玉珍;徐益群;;煙草斜紋夜蛾生物學(xué)特性的研究[A];“創(chuàng)新驅(qū)動與現(xiàn)代植保”——中國植物保護學(xué)會第十一次全國會員代表大會暨2013年學(xué)術(shù)年會論文集[C];2013年
相關(guān)重要報紙文章 前10條
1 杭州藍天園林生態(tài)科技股份有限公司 羅會生;斜紋夜蛾防治技術(shù)[N];中國花卉報;2014年
2 許紅 彭傳華;警惕斜紋夜蛾危害水生蔬菜[N];湖北科技報;2001年
3 鎮(zhèn)江市蔬菜病蟲測報站 高小文;四代斜紋夜蛾和豇豆煤霉病發(fā)生偏重[N];江蘇農(nóng)業(yè)科技報;2005年
4 肖愛輝 李雪梅;秋玉米須防斜紋夜蛾危害[N];湖南科技報;2007年
5 王金輝;如何防治斜紋夜蛾[N];湖南科技報;2000年
6 水清;斜紋夜蛾怎么治[N];江蘇農(nóng)業(yè)科技報;2005年
7 劉志強;棉田斜紋夜蛾為害特點與防治[N];山東科技報;2008年
8 辛集市植保站 陳書喬;注意查治棉、薯田斜紋夜蛾[N];河北科技報;2011年
9 李群;警惕斜紋夜蛾暴發(fā)成災(zāi)[N];云南科技報;2008年
10 廣西玉林市三山園藝場 黃家南;抓緊防治玉米斜紋夜蛾[N];農(nóng)民日報;2012年
相關(guān)博士學(xué)位論文 前6條
1 范蕊;斜紋夜蛾誘導(dǎo)后大豆葉片蛋白質(zhì)組學(xué)分析及GmSAMS1的克隆和功能研究[D];南京農(nóng)業(yè)大學(xué);2010年
2 張進;斜紋夜蛾與棉鈴蟲化感基因鑒定及受體功能分析[D];南京農(nóng)業(yè)大學(xué);2015年
3 周嘉良;斜紋夜蛾耐藥性和生殖對重金屬鉛脅迫的響應(yīng)及分子機理[D];中山大學(xué);2012年
4 黃水金;斜紋夜蛾的抗藥性及其機理研究[D];南京農(nóng)業(yè)大學(xué);2006年
5 劉惠芬;斜紋夜蛾核型多角體病毒Ⅱ型基因組DNA復(fù)制原點及ORF63基因分析[D];山東農(nóng)業(yè)大學(xué);2012年
6 王洪濤;B型煙粉虱取食誘導(dǎo)的煙草對斜紋夜蛾生長發(fā)育和繁殖的影響及機制[D];山東農(nóng)業(yè)大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 王緯華;湖南煙草有害動物調(diào)查及其測報和防治研究[D];湖南農(nóng)業(yè)大學(xué);2014年
2 婁琳琳;殺蟲劑對斜紋夜蛾UDP-葡萄糖基轉(zhuǎn)移酶活性的影響[D];南京農(nóng)業(yè)大學(xué);2014年
3 劉亮;寄主及寄主轉(zhuǎn)換對斜紋夜蛾免疫及抗SLNPV能力的影響[D];揚州大學(xué);2015年
4 畢洪論;斜紋夜蛾種群的遺傳調(diào)控[D];福建農(nóng)林大學(xué);2016年
5 杜娟;斜紋夜蛾生物學(xué)及人工飼料的研究[D];東北農(nóng)業(yè)大學(xué);2016年
6 辛未一;兩種寄主植物對斜紋夜蛾繁殖及卵黃原蛋白基因(Vg)表達的影響[D];揚州大學(xué);2016年
7 李賓賓;秋甘藍田斜紋夜蛾種群動態(tài)及時空生態(tài)位研究[D];安徽農(nóng)業(yè)大學(xué);2015年
8 楊海燕;水分脅迫和營養(yǎng)對斜紋夜蛾的影響及其機制初探[D];揚州大學(xué);2008年
9 劉志才;廣東佛山地區(qū)斜紋夜蛾發(fā)生規(guī)律及防治研究[D];湖南農(nóng)業(yè)大學(xué);2005年
10 許冬;斜紋夜蛾取食誘導(dǎo)棉花抑制性消減文庫的構(gòu)建及初步分析[D];中國農(nóng)業(yè)科學(xué)院;2008年
,本文編號:2175856
本文鏈接:http://sikaile.net/kejilunwen/nykj/2175856.html