基于光譜特征分異的玉米種植面積提取
發(fā)布時間:2018-07-23 20:18
【摘要】:玉米種植面積的準(zhǔn)確獲取是進行玉米長勢監(jiān)測和產(chǎn)量估測的前提與基礎(chǔ)。在對Landsat-8/OLI影像進行輻射定標(biāo)、大氣校正、幾何精校正和裁剪等預(yù)處理的基礎(chǔ)上,基于典型地物光譜空間差異與物候特征的異同,選取具有代表性的4種植被指數(shù)[歸一化差值植被指數(shù)(NDVI)、差值植被指數(shù)(DVI)、比值植被指數(shù)(RVI)、綠度植被指數(shù)(GVI)]和近紅外波段反射率,通過構(gòu)建植被光譜特征指標(biāo)閾值對不同地物進行識別和分類,最后獲取玉米種植面積。結(jié)果表明,利用近紅外波段反射率可以將農(nóng)作物與其他地物區(qū)分開來,即當(dāng)其反射率值大于0.37時,地物為農(nóng)作物。對不同種類農(nóng)作物識別時,選擇NDVI0.86、DVI0.53、RVI13.00、GVI3 713.60作為分類閾值,可以將玉米與水稻和大豆區(qū)分,準(zhǔn)確提取到玉米的種植面積。利用樣本數(shù)據(jù)和當(dāng)?shù)剞r(nóng)業(yè)部門提供的數(shù)據(jù)進行面積提取精度驗證,總體精度為92.75%,說明基于多光譜特征指標(biāo)建立分類閾值的方法可以準(zhǔn)確提取玉米種植面積,該方法可以為江淮玉米種植區(qū)縣域玉米種植面積的提取提供參考。
[Abstract]:Accurate acquisition of maize planting area is the precondition and basis for maize growth monitoring and yield estimation. On the basis of radiometric calibration, atmospheric correction, geometric precision correction and trimming of Landsat-8/OLI images, based on the similarities and differences between the spatial differences of typical geographical features and phenological characteristics, the representative 4 cropping fingers are selected. The number [normalized difference vegetation index (NDVI), differential vegetation index (DVI), ratio vegetation index (RVI), green vegetation index (GVI) and near-infrared reflectance were identified and classified by constructing the threshold value of vegetation spectral characteristic index, and the maize planting area was obtained at last. The results showed that the reflectance of near infrared band could be used. To distinguish the crops from other objects, that is, when their reflectivity is greater than 0.37, the land is a crop. When identifying different kinds of crops, NDVI0.86, DVI0.53, RVI13.00, and GVI3 713.60 are selected as the classification threshold, and corn and rice and soybean can be distinguished, and the planting area of Maize can be extracted accurately. The data provided by the industry department verified the accuracy of area extraction, and the overall precision was 92.75%. It indicated that the method of setting up the classification threshold based on the multi spectral characteristic index could accurately extract the maize planting area. This method could provide reference for the extraction of maize planting area in the county area of the Jianghuai corn planting area.
【作者單位】: 安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院;江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)信息研究所;國家農(nóng)業(yè)信息化工程技術(shù)研究中心;
【基金】:國家自然科學(xué)基金項目(41571323) 江蘇省重點研究計劃項目(BE2016730)
【分類號】:S127;S513
本文編號:2140529
[Abstract]:Accurate acquisition of maize planting area is the precondition and basis for maize growth monitoring and yield estimation. On the basis of radiometric calibration, atmospheric correction, geometric precision correction and trimming of Landsat-8/OLI images, based on the similarities and differences between the spatial differences of typical geographical features and phenological characteristics, the representative 4 cropping fingers are selected. The number [normalized difference vegetation index (NDVI), differential vegetation index (DVI), ratio vegetation index (RVI), green vegetation index (GVI) and near-infrared reflectance were identified and classified by constructing the threshold value of vegetation spectral characteristic index, and the maize planting area was obtained at last. The results showed that the reflectance of near infrared band could be used. To distinguish the crops from other objects, that is, when their reflectivity is greater than 0.37, the land is a crop. When identifying different kinds of crops, NDVI0.86, DVI0.53, RVI13.00, and GVI3 713.60 are selected as the classification threshold, and corn and rice and soybean can be distinguished, and the planting area of Maize can be extracted accurately. The data provided by the industry department verified the accuracy of area extraction, and the overall precision was 92.75%. It indicated that the method of setting up the classification threshold based on the multi spectral characteristic index could accurately extract the maize planting area. This method could provide reference for the extraction of maize planting area in the county area of the Jianghuai corn planting area.
【作者單位】: 安徽農(nóng)業(yè)大學(xué)資源與環(huán)境學(xué)院;江蘇省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)信息研究所;國家農(nóng)業(yè)信息化工程技術(shù)研究中心;
【基金】:國家自然科學(xué)基金項目(41571323) 江蘇省重點研究計劃項目(BE2016730)
【分類號】:S127;S513
【相似文獻】
相關(guān)期刊論文 前5條
1 吳豪翔,王人潮;土壤光譜特征及其定量分析在土壤分類上的應(yīng)用研究[J];土壤學(xué)報;1991年02期
2 張艷彬;王玉;楊忠芳;陳岳龍;;成都經(jīng)濟區(qū)土壤光譜特征及其意義[J];世界地質(zhì);2007年01期
3 羅清;;青藏高原季節(jié)湖土壤光譜特征研究[J];西南大學(xué)學(xué)報(自然科學(xué)版);2012年07期
4 張琳,劉培君,常萍,艾力西爾·庫爾班;阜康試驗區(qū)主要地物光譜特征及其分析[J];新疆氣象;1995年05期
5 韓陽;趙云升;王野喬;;不同含水量土壤偏振光譜特征定量分析[J];遙感學(xué)報;2013年05期
相關(guān)碩士學(xué)位論文 前2條
1 劉效棟;黃土臺塬區(qū)土壤有機質(zhì)高光譜特征及反演研究[D];西北農(nóng)林科技大學(xué);2015年
2 王祥峰;基于光譜特征以及養(yǎng)分指示因子的土壤養(yǎng)分遙感監(jiān)測研究[D];遼寧工程技術(shù)大學(xué);2015年
,本文編號:2140529
本文鏈接:http://sikaile.net/kejilunwen/nykj/2140529.html
最近更新
教材專著