高光譜估算土壤有機(jī)質(zhì)含量的波長(zhǎng)變量篩選方法
[Abstract]:Because of the large amount of soil hyperspectral data, high wave band dimension, invalid spectral information, redundant and overlapping phenomena, the inversion model of soil organic matter content based on the whole wave band is unstable and the precision is difficult to improve. Therefore, it is one of the hotspots of soil hyperspectral research to explore the method of screening key wavelength variables and improve the performance of model prediction by filtering interference, redundancy and collinear information. In this paper, the indoor physical and chemical analysis, spectral measurement and treatment of soil samples in Jianghan Plain were carried out, and the invalid variables were eliminated by (uninformative variables elimination without information variable. The competitive adaptive reweighting algorithm (competitive adaptive reweighted sampling cars) is used to filter redundant variables, and the continuous projection algorithm (successive projections algorithm is used to eliminate collinear variables. The estimation model of soil organic matter content was established by partial least square regression (partial least squares regression), and the advantages and disadvantages of various methods were compared. Finally, the method system of selecting the key variables of soil hyperspectral data was constructed. The results show that the model accuracy of the SPA method is lower than that of the full-band method, and the modeling effect of the other six variable selection methods is better than that of the full-band method, and the car method is better than the UVE-SPA variable selection method among the three single variable selection methods. The relative analysis error (RPD) of the prediction set is 2.84. It was found that the PLSR model of soil organic matter content established by CARS-SPA method was the best, and 37 characteristic wavelengths were selected from 2 001 wavelengths. The determination coefficient R2 and the relative analysis error RPD of the model prediction set are 0.92n3.60, respectively. The selected band is only 1.85. CARS-SPA-PLSR model is simple, and the prediction effect is good. It can be used as an important method to estimate the soil organic matter content in this region. It can be used to guide the development of soil near-earth sensor equipment in the future.
【作者單位】: 華中師范大學(xué)地理過(guò)程分析與模擬湖北省重點(diǎn)實(shí)驗(yàn)室;華中師范大學(xué)城市與環(huán)境科學(xué)學(xué)院;華中師范大學(xué)湖北經(jīng)濟(jì)與社會(huì)發(fā)展研究院;
【基金】:國(guó)家自然科學(xué)基金項(xiàng)目(41401232;41271534) 中央高;究蒲袠I(yè)務(wù)費(fèi)專(zhuān)項(xiàng)資金項(xiàng)目(CCNU15A05006;CCNU15ZD001)
【分類(lèi)號(hào)】:S153.621;S127
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 白麗;王進(jìn);蔣桂英;楊朋;孫蜀江;;干旱區(qū)基于高光譜的棉花遙感估產(chǎn)研究[J];中國(guó)農(nóng)業(yè)科學(xué);2008年08期
2 盧巖;郭斗斗;孫成明;劉濤;陳瑛瑛;武威;;基于高光譜的水稻土有機(jī)質(zhì)含量估算研究[J];中國(guó)農(nóng)學(xué)通報(bào);2014年18期
3 江威;;武夷山地區(qū)土壤有機(jī)質(zhì)高光譜模型建立與評(píng)價(jià)[J];安徽農(nóng)業(yè)科學(xué);2012年22期
4 徐明星;周生路;丁衛(wèi);吳紹華;吳巍;;蘇北沿海灘涂地區(qū)土壤有機(jī)質(zhì)含量的高光譜預(yù)測(cè)[J];農(nóng)業(yè)工程學(xué)報(bào);2011年02期
5 盧艷麗;白由路;楊俐蘋(píng);王紅娟;孔慶波;;基于主成分回歸分析的土壤有機(jī)質(zhì)高光譜預(yù)測(cè)與模型驗(yàn)證[J];植物營(yíng)養(yǎng)與肥料學(xué)報(bào);2008年06期
6 盧艷麗;白由路;楊俐蘋(píng);王磊;王賀;;東北平原不同類(lèi)型土壤有機(jī)質(zhì)含量高光譜反演模型同質(zhì)性研究[J];植物營(yíng)養(yǎng)與肥料學(xué)報(bào);2011年02期
7 彭杰;向紅英;周清;張楊珠;王家強(qiáng);龐新安;;土壤氧化鐵的高光譜響應(yīng)研究[J];光譜學(xué)與光譜分析;2013年02期
8 陳紅艷;趙庚星;李希燦;朱西存;隋龍;王銀娟;;基于小波變換的土壤有機(jī)質(zhì)含量高光譜估測(cè)[J];應(yīng)用生態(tài)學(xué)報(bào);2011年11期
9 于士凱;姚艷敏;王德?tīng)I(yíng);司海青;;基于高光譜的土壤有機(jī)質(zhì)含量反演研究[J];中國(guó)農(nóng)學(xué)通報(bào);2013年23期
10 喬璐;陳立新;張杰;黃蘭英;;哈爾濱市土壤有機(jī)質(zhì)高光譜模型[J];東北林業(yè)大學(xué)學(xué)報(bào);2010年07期
相關(guān)會(huì)議論文 前1條
1 王進(jìn);白麗;蔣貴英;楊朋;孫蜀江;;干旱區(qū)基于高光譜的棉花遙感估產(chǎn)研究[A];中國(guó)氣象學(xué)會(huì)2008年年會(huì)衛(wèi)星遙感應(yīng)用技術(shù)與處理方法分會(huì)場(chǎng)論文集[C];2008年
相關(guān)碩士學(xué)位論文 前1條
1 吳斐;基于光譜反射率的耕地估產(chǎn)研究[D];華中師范大學(xué);2011年
,本文編號(hào):2133453
本文鏈接:http://sikaile.net/kejilunwen/nykj/2133453.html