玉米行間定點(diǎn)扎穴深施追肥機(jī)設(shè)計(jì)與研究
本文選題:玉米行間 + 定點(diǎn)扎穴。 參考:《中國農(nóng)業(yè)大學(xué)》2017年博士論文
【摘要】:玉米是糧食、飼料、工業(yè)原料、能源等多用途作物,種植面積和總產(chǎn)均位列全球第一。提高玉米單產(chǎn)和總產(chǎn)水平,是確保國家糧食安全和促進(jìn)農(nóng)民增產(chǎn)增收的重要途徑。大喇叭口期是玉米生長發(fā)育最旺盛的階段,是養(yǎng)分需求最大的時(shí)期,大喇叭口期追肥對提高玉米產(chǎn)量具有決定性的作用。但是,由于玉米大喇叭口期植株高大、機(jī)械進(jìn)地困難,往往采用人工撒施追肥或小型追肥器追肥,追肥效率低下、肥料撒施地表污染環(huán)境且肥料利用率低,造成嚴(yán)重的資源浪費(fèi)。因此,本文針對玉米中后期追肥機(jī)械化水平低且追肥困難的問題,結(jié)合玉米追肥農(nóng)藝要求,設(shè)計(jì)了一種玉米行間定點(diǎn)扎穴深施追肥機(jī),研究了玉米行間定點(diǎn)追肥技術(shù),進(jìn)行了各關(guān)鍵部件的結(jié)構(gòu)設(shè)計(jì)與參數(shù)優(yōu)化,通過田間試驗(yàn)分析了追肥機(jī)的追肥性能。主要結(jié)論和研究成果如下:(1)首次進(jìn)行玉米行間機(jī)械化定點(diǎn)追肥技術(shù)研究,設(shè)計(jì)了追肥點(diǎn)定位裝置。采用正交試驗(yàn)方法研究追肥時(shí)期、追肥深度和追肥點(diǎn)與玉米植株距離對玉米生長及產(chǎn)量的影響,確定最優(yōu)的水平組合,并以此為根據(jù)設(shè)計(jì)了追肥點(diǎn)定位裝置,對裝置玉米植株位置探測、位置信號傳遞、動力傳遞及定點(diǎn)確定原理進(jìn)行分析,計(jì)算得到追肥點(diǎn)的理論位置距離玉米植株109~125 mm,追肥深度80~100mm,探測桿長度100 mm,曲柄長度70 mm,連桿長度150 mm,扎穴器長度566 mm;通過Matlab軟件對扎穴器頂點(diǎn)的運(yùn)動軌跡進(jìn)行了模擬,結(jié)果表明扎穴器的扎穴深度為100 mm,運(yùn)動到地面以下時(shí)作垂直運(yùn)動,水平位移為0,滿足垂直扎穴和零速排肥的要求。(2)設(shè)計(jì)了新型的成穴裝置,建立蹄型滑軌、成穴器等部件參數(shù)設(shè)計(jì)的數(shù)學(xué)模型。采用旋轉(zhuǎn)正交方法進(jìn)行土壤參數(shù)標(biāo)定并進(jìn)行結(jié)果優(yōu)化,通過土槽試驗(yàn)進(jìn)行結(jié)果驗(yàn)證,得到粘濕土壤JKR表面能為6J/m2,彈性恢復(fù)系數(shù)為0.33,靜摩擦系數(shù)為0.91,滾動摩擦系數(shù)為0.07;建立成穴器入土扎穴仿真模型,結(jié)果表明,3種成穴器在相同的入土深度處的阻力大小分別為鴨嘴型扁嘴型圓錐型,最大正壓力分別為47.06N、45.82N和41.48N,3種成穴器形成穴孔截面面積關(guān)系為扁嘴型鴨嘴型圓錐型,綜合3種成穴器的入土阻力值和穴孔截面面積,最終選取扁嘴型成穴器作為追肥機(jī)的成穴器,保證穴底肥料分布均勻。(3)設(shè)計(jì)了新型間歇式排肥裝置,建立顆粒肥料與排肥裝置的仿真模型,分析排肥性能及肥料顆粒在排肥輪中的運(yùn)動情況,并進(jìn)行排肥輪結(jié)構(gòu)參數(shù)優(yōu)化,結(jié)果得到擋肥塊厚度5 mm,排肥輪旋轉(zhuǎn)角度120°,單次排肥量滿足穴施追肥3-15g的要求。(4)基于關(guān)鍵功能部件的結(jié)構(gòu)原理,設(shè)計(jì)了玉米行間定點(diǎn)扎穴深施追肥機(jī),介紹了該機(jī)的總體結(jié)構(gòu)及工作原理,對追肥裝置各運(yùn)動部件進(jìn)行時(shí)序分析,并對主要運(yùn)動部件的振動進(jìn)行分析,結(jié)果表明追肥機(jī)各功能部件均滿足設(shè)計(jì)要求,有望解決玉米中后期機(jī)械化行間追肥困難的問題。發(fā)表論文2篇,發(fā)明專利1項(xiàng)。(5)田間追肥試驗(yàn)結(jié)果表明,隨著追肥機(jī)前進(jìn)速度的增加,漏追率提高,豎直方向振幅和水平方向的路徑偏移量均增加,追肥深度和扎穴點(diǎn)與對應(yīng)植株距離波動越大,穩(wěn)定性越差。綜合考慮追肥機(jī)的追肥穩(wěn)定性和工作效率,前進(jìn)速度選取為0.8 m/s左右最佳。
[Abstract]:Corn is a multipurpose crop, such as grain, feed, industrial raw material, energy and so on. The planting area and total yield are ranked first in the world. Improving the yield and the total yield of corn is an important way to ensure the national grain safety and increase the yield and increase the income of the farmers. Trumpet manure has a decisive role in improving maize yield. However, due to the large plant in the bell mouth stage and the difficulty of mechanical entry, it is often used to apply manure or minitype fertilizer recovery, low efficiency, fertilizer application and low fertilizer utilization, thus causing serious waste of resources. Therefore, this paper is a serious waste of resources. Therefore, this paper is a serious waste of resources. In view of the low level of mechanization and the difficulty of dressing fertilizer in the middle and late period of maize, a deep dressing machine was designed in combination with the requirement of corn dressing, and the site fixed-point dressing technology of maize was studied. The structure design and parameter optimization of the key components were carried out. The fertilizer pursuit of the machine was analyzed by field experiment. The main conclusions and research results are as follows: (1) for the first time, the mechanized site dressing technology of maize was studied, and the positioning device of the dressing point was designed. The orthogonal test method was used to study the influence of the dressing depth and the distance between the dressing point and the maize plant on the growth and yield of maize. The positioning device was designed to detect the position of maize plant position, position signal transmission, power transmission and fixed point determination principle. The theoretical location of the fertilizer tracing point was calculated to be 109~125 mm from maize plant, 80 to 100mm in depth of dressing, 100 mm for the length of probe rod, 70 mm for crank length, 150 mm for connecting rod and 566 m in length of ligature M; simulate the movement track of the vertex of the hole holder through the Matlab software. The results show that the depth of the hole ligation is 100 mm, and the horizontal displacement is 0 when moving to the ground. (2) a new type of hole forming device is designed, and the parameters of the hoof type slide rail and the hole forming device are designed. The soil parameters are calibrated by rotary orthogonal method and the results are optimized. Through the soil trough test, it is proved that the JKR surface can be 6J/m2, the elastic recovery coefficient is 0.33, the static friction coefficient is 0.91, the rolling friction coefficient is 0.07, and the simulation model of the hole forming device is established, and the results show that 3 kinds of forms are formed. The resistance size of the acupoint at the same depth is the flat beak type conical type of the duck mouth type, the maximum positive pressure is 47.06N, 45.82N and 41.48N respectively. The section area of the 3 acupoint forming holes is flat mouth type duckbill type conical type, and the soil resistance value of the 3 acupoints and the section area of the hole hole are integrated. Finally, the flat mouth type acupoint is selected as the acupoint. In order to ensure the distribution of fertilizer at the bottom of the hole, the distribution of fertilizer is uniform. (3) a new type of batch fertilizer device is designed, the simulation model of the granular fertilizer and the fertilizer arrangement is set up, the performance of the fertilizer and the movement of the fertilizer particles in the dressing wheel are analyzed, and the structure parameters of the manure wheel are optimized. The result is that the thickness of the block fertilizer block is 5 mm, and the rotation angle of the dressing wheel is obtained. 120 degree, the quantity of the single row manure meets the requirement of the manure 3-15g. (4) based on the structural principle of key functional components, a deep dressing machine is designed for the fixed point ligation of the corn. The overall structure and working principle of the machine are introduced. The timing analysis of the moving parts of the dressing device is carried out, and the vibration of the main moving parts is analyzed. The results show that the vibration of the main moving parts is analyzed. The functional components of the finishing machine all meet the design requirements, and it is expected to solve the problem of the difficulty of manuring in the middle and late period of maize. 2 papers and 1 invention patents are published. (5) the field fertilization test results show that the rate of leakage chasing increases with the increase of the speed of the fertilizer tracing machine, and the path offset of vertical square to amplitude and horizontal direction is increased, and the dressing is pursued. The greater the distance between the depth and the point of the point and the corresponding plant, the worse the stability is. Considering the stability and efficiency of the dressing machine, the speed of advance is about 0.8 m/s.
【學(xué)位授予單位】:中國農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:S224.2
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武濤;黃偉鳳;陳學(xué)深;馬旭;韓子奇;潘潼;;考慮顆粒間黏結(jié)力的黏性土壤離散元模型參數(shù)標(biāo)定[J];華南農(nóng)業(yè)大學(xué)學(xué)報(bào);2017年03期
2 徐文藝;張華;張志起;周進(jìn);崔中凱;;小型大蒜聯(lián)合收獲機(jī)設(shè)計(jì)與試驗(yàn)[J];農(nóng)機(jī)化研究;2016年11期
3 胡紅;張翼夫;陳婉芝;趙宏波;;我國玉米追肥機(jī)械發(fā)展現(xiàn)狀與前景展望[J];玉米科學(xué);2016年03期
4 馬劍;李志軍;;分期施氮對全膜雙壟溝播玉米干物質(zhì)分配格局及產(chǎn)量的影響[J];隴東學(xué)院學(xué)報(bào);2016年03期
5 頓國強(qiáng);陳海濤;馮夷寧;楊紀(jì)龍;李昂;查韶輝;;基于EDEM軟件的肥料調(diào)配裝置關(guān)鍵部件參數(shù)優(yōu)化與試驗(yàn)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年07期
6 胡迎春;閆鑫;莊錦芳;牟向偉;廖偉;;往復(fù)式桑葉采摘機(jī)設(shè)計(jì)及采摘效益分析[J];農(nóng)機(jī)化研究;2016年04期
7 齊興源;周志艷;楊程;羅錫文;谷秀艷;臧禹;劉武蘭;;稻田氣力式變量施肥機(jī)關(guān)鍵部件的設(shè)計(jì)與試驗(yàn)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年06期
8 潘世強(qiáng);趙亞祥;田耘;金亮;;有機(jī)肥撒施機(jī)水平單圓盤式撒施器的仿真分析與試驗(yàn)研究[J];中國農(nóng)機(jī)化學(xué)報(bào);2016年03期
9 胡永光;楊葉成;肖宏儒;李萍萍;;茶園施肥機(jī)離心撒肥過程仿真與參數(shù)優(yōu)化[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年05期
10 左興健;武廣偉;付衛(wèi)強(qiáng);李立偉;魏學(xué)禮;趙春江;;風(fēng)送式水稻側(cè)深精準(zhǔn)施肥裝置的設(shè)計(jì)與試驗(yàn)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年03期
相關(guān)會議論文 前2條
1 張銳;李建橋;;粘濕土壤離散元?jiǎng)討B(tài)仿真模型研究[A];中國農(nóng)業(yè)機(jī)械學(xué)會成立40周年慶典暨2003年學(xué)術(shù)年會論文集[C];2003年
2 李仕途;羅燕;宋成良;付志一;;玉米莖稈節(jié)間抗折強(qiáng)度分析[A];北京力學(xué)會第17屆學(xué)術(shù)年會論文集[C];2011年
相關(guān)碩士學(xué)位論文 前5條
1 楊杰;玉米全膜雙壟溝膜下直插式施肥機(jī)的設(shè)計(jì)[D];甘肅農(nóng)業(yè)大學(xué);2015年
2 聶瑞柱;基于視覺的AGV路徑跟蹤技術(shù)研究[D];青島科技大學(xué);2015年
3 王燕;基于離散元法的深松鏟結(jié)構(gòu)與松土效果研究[D];吉林農(nóng)業(yè)大學(xué);2014年
4 李鵬;擺管式撒肥機(jī)機(jī)理與試驗(yàn)研究[D];華中農(nóng)業(yè)大學(xué);2013年
5 呂昊;基于離散元法的排肥器數(shù)字化設(shè)計(jì)方法研究[D];吉林大學(xué);2008年
,本文編號:2086481
本文鏈接:http://sikaile.net/kejilunwen/nykj/2086481.html