天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

黃土塬區(qū)蘋果園土壤水文特征及蒸散規(guī)律

發(fā)布時(shí)間:2018-06-27 08:12

  本文選題:黃土塬區(qū) + 蘋果園。 參考:《中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心)》2016年碩士論文


【摘要】:本研究主要以黃土塬區(qū)的蘋果園為研究對(duì)象,圍繞水量平衡和蒸散過程,在定點(diǎn)監(jiān)測(cè)的基礎(chǔ)上,分析蘋果林冠層截留特征及影響因子、不同降水年型蘋果園的蒸散規(guī)律、主要農(nóng)林用地土壤水文特征及水量平衡閉合狀態(tài)。主要研究結(jié)論如下:林冠對(duì)果園降水再分配過程具有重要影響。結(jié)果表明,蘋果園成林與幼林的降水再分配過程中穿透雨量最大,冠層截留量次之,樹干莖流量最小,分別占總降水量的80.4%、16.7%、2.9%;蘋果園成林相對(duì)于幼林的穿透雨率低,冠層截留率高,蘋果園成林有利于截獲降雨,而幼林利于穿透雨的形成。不同降雨量級(jí)對(duì)林冠層的降水再分配有明顯影響,隨著降雨量級(jí)的增大,蘋果園內(nèi)穿透雨量、穿透率、樹干莖流量、樹干莖流率和林冠截留量均呈增大趨勢(shì),但冠層截留率隨雨量級(jí)增大而逐漸減小;在同一降雨量級(jí)中,蘋果園的物候特征對(duì)降水再分配過程影響顯著,穿透雨率隨時(shí)間呈先降低再升高的趨勢(shì),冠層截留率隨時(shí)間呈現(xiàn)先升高再降低的趨勢(shì),在整個(gè)生長(zhǎng)季,穿透雨率與冠層截留率呈負(fù)相關(guān)關(guān)系。蘋果園在生長(zhǎng)季內(nèi)的半月尺度蒸散變化規(guī)律呈明顯的雙峰曲線,第一峰值出現(xiàn)在7月后半月或者8月前半月,第二峰值出現(xiàn)在9月前半月。2012㧟2014三年期間,蘋果生長(zhǎng)季內(nèi)的蒸散量占降水量的比例分別為103%、104%與99%;2012年的蒸散量高出降水量12.1 mm,2013年的蒸散量高出降水量18.2 mm,2014年的蒸散量小于降水量1.2 mm。蘋果園蒸散在生長(zhǎng)季內(nèi)的變異系數(shù)為1.0左右,脈動(dòng)程度較大。在屬于典型雨養(yǎng)農(nóng)業(yè)區(qū)的長(zhǎng)武塬區(qū),自然降水是蘋果經(jīng)濟(jì)林生態(tài)系統(tǒng)蒸散耗水的主要水分來源,降水量的多少直接影響著蘋果的質(zhì)量與數(shù)量。在枯水年(2012年)和偏枯的平水年(2013年),蒸散量大于降水量,即降水輸入不能滿足果園蒸散需水,土壤貯水表現(xiàn)為虧缺狀態(tài);在平水年(2014年),當(dāng)年降水量可滿足果園蒸散耗水的要求。同時(shí),黃土塬區(qū)蘋果園土壤水及蒸散對(duì)降雨產(chǎn)生快速水文響應(yīng)機(jī)制,降落到林地的雨水迅速以土壤蒸發(fā),植被蒸騰等形式進(jìn)行水分輸出。對(duì)黃土塬區(qū)主要農(nóng)林用地的土壤水分變化特征及其干化現(xiàn)狀進(jìn)行分析。結(jié)果表明:0㧟600 cm土壤貯水量表現(xiàn)為9齡果園玉米地小麥地19齡果園,均值分別為186.5 cm、183.6 cm、158.6 cm與132.8 cm,除9齡果園與玉米地間差異性不顯著(P0.05)外,其他農(nóng)林用地土壤貯水量?jī)蓛杀容^均呈顯著性差異(P0.05);四樣地淺層(0㧟200 cm)土壤含水量波動(dòng)程度為中等變異(10%CV100%),深層土壤含水量穩(wěn)定性較高,為弱變異(CV10%);19齡果園的土壤水分消耗深度為500 cm,9齡果園、玉米地與小麥地均為300 cm,19齡果園的雨水補(bǔ)給深度為250 cm,而9齡果園、玉米地與小麥地均大于600 cm;19齡蘋果園土壤干化最嚴(yán)重,0㧟200 cm土壤干化程度呈季節(jié)性變化,200㧟250cm、250㧟320 cm土層分別為嚴(yán)重干燥化與強(qiáng)烈干燥化,320㧟600 cm呈極度干燥化,形成永久性土壤干層;其次為小麥地,0㧟100 cm產(chǎn)生臨時(shí)性干層,250㧟300 cm發(fā)生強(qiáng)烈干燥化;玉米地與9齡果園干化程度較輕,在水分補(bǔ)給不足情況下,只在土壤淺層產(chǎn)生臨時(shí)性土壤干層。水量平衡是描述生態(tài)系統(tǒng)功能和特征的重要指標(biāo)之一。通過對(duì)蘋果園成林和幼林水量平衡的綜合分析,發(fā)現(xiàn)水量平衡閉合情況較好;但在降水量較小或者很大時(shí),忽略項(xiàng)及試驗(yàn)操作誤差會(huì)使研究果園系統(tǒng)的水量平衡閉合狀態(tài)相對(duì)較差。在試驗(yàn)期間,蒸散貢獻(xiàn)量由小到大依次為冠層截留,棵間土壤蒸發(fā)和果樹蒸騰水分蒸散,9齡和19齡果園中該三組分與蒸散量的百分比值分別為10.1%、34.8%、55.1%和8.1%、30.3%、61.6%;10齡果園和20齡果園中該三組分與蒸散量的百分比值分別為7.9%、27.0%、65.1%和12.9%、25.3%、61.8%;同時(shí)發(fā)現(xiàn)幼齡果園土壤蒸發(fā)量大于成林土壤蒸發(fā),而成林果樹蒸騰作用卻大于幼林果樹蒸騰;且土壤蒸發(fā)量及果樹蒸騰量在觀測(cè)期內(nèi)均出現(xiàn)先增大后降低的趨勢(shì),土壤蒸發(fā)量6月份出現(xiàn)最大值,植被蒸騰最大值出現(xiàn)在7月,該變化規(guī)律與環(huán)境及果樹生長(zhǎng)狀態(tài)關(guān)系密切。
[Abstract]:This study focuses on the apple orchard in the loess tableland area. On the basis of the water balance and evapotranspiration process, the characteristics of the canopy interception and the influence factors of the apple canopy are analyzed on the basis of fixed-point monitoring. The evapotranspiration rules of different annual apple orchard, the main characteristics of soil hydrology and the closed state of water balance in the main agroforestry are the main conclusions. The results show that the rainfall redistribution process of the orchard has an important influence. The results show that the rainfall redistribution process of the apple orchard and the young forest is the most penetrating rain redistribution process, the canopy interception is the second, the stem stem flow is the smallest, which accounts for 80.4%, 16.7%, 2.9% of the total precipitation, and the penetration rate of the apple orchard for young forest is low and the canopy interception rate is high. The orchard adult forest was beneficial to intercept the rainfall, and the young forest was conducive to the formation of the rain. The different rainfall magnitude had an obvious influence on the precipitation redistribution of the canopy layer. With the increase of the rainfall magnitude, the penetration rate, the penetration rate, the stem flow rate, the stem stem flow rate and the canopy interception in the apple orchard were all increasing, but the canopy interception rate increased with the rainfall magnitude. In the same rainfall magnitude, the phenological characteristics of the apple orchard have a significant influence on the precipitation redistribution process, and the penetration rate is first decreasing and then rising. The canopy interception rate increases first and then decreases with time. In the whole growing season, the penetration rain rate is negatively related to the canopy interception rate. The apple orchard is growing in the growth season. The variation of the transpiration in the half of the season showed a clear Shuangfeng curve. The first peak appeared in the latter half of July or the first half of August. The second peak appeared in the first half of September. During the first half of September, the proportion of the evapotranspiration in the growing season of Apple was 103%, 104% and 99%, respectively, and the evapotranspiration in 2012 was 12.1 mm, 2013 of the precipitation. The annual evapotranspiration was 18.2 mm, and the evapotranspiration was less than 1.2 mm. in 2014. The variation coefficient of the evapotranspiration of apple orchard in the growing season was about 1 and the degree of pulsation was larger. It affects the quality and quantity of the apple. In the dry year (2012) and the flat water year (2013), the evapotranspiration is greater than the precipitation, that is, the input of the precipitation can not meet the evapotranspiration of the orchard, and the soil water storage is deficient. In the year of flat water (2014), the precipitation can meet the requirement of the evapotranspiration of the orchard. The soil water and evapotranspiration produced a rapid hydrological response mechanism, and the rain fell to the woodland quickly by soil evaporation, vegetation transpiration and other forms of water output. The characteristics of soil moisture change and the present dry status of the main agricultural and forest land in the Loess Tableland were analyzed. The results showed that the 0? 600 cm soil water storage capacity was represented by the 9 year old orchard corn land The average value of 19 years old orchard in wheat field was 186.5 cm, 183.6 cm, 158.6 cm and 132.8 cm respectively. Except for 9 years old orchard and corn field, the soil moisture content 22 of other agroforestry was significantly different (P0.05), and the fluctuation degree of soil water content in the shallow layer of four samples (0? 200 cm) was moderate variation (10%CV100%) and deep soil water content. The soil moisture consumption depth of the 19 year old orchard is 500 cm, the 9 year old orchard, the corn land and the wheat land are 300 cm, the 19 year old orchard is 250 cm, and the 9 year orchard, the corn land and the wheat land are more than 600 cm, the 19 age apple orchard is the most serious soil dry, 0? 200 cm soil drying degree is seasonal. Changes, 200? 250cm, 250? 320 cm soil layers were severe drying and dryness, 320? 600 cm were extremely dry, formed permanent soil dry layer, followed by wheat land, 0? 100 cm to produce temporary dry layer, 250? 300 cm dryness; corn and 9 years orchard less dry, under the condition of insufficient water supply, only in soil under the condition of water supply The water balance is one of the most important indexes to describe the function and characteristics of the ecosystem in the shallow layer. Through the comprehensive analysis of the water balance of the apple orchard and the young forest, it is found that the balance of water balance is better, but when the precipitation is small or large, the neglect and the experimental error will make the study of the orchard system water. During the experiment, the contribution of the evapotranspiration from small to large was canopy interception, soil evaporation and fruit tree transpiration water evapotranspiration, and the percentage ratio of three components to evapotranspiration in 9 and 19 years old were 10.1%, 34.8%, 55.1% and 8.1%, 30.3%, 61.6%, and the three component and steam evapotranspiration in the 10 years orchard and the 20 age orchard. The percentage of dispersion is 7.9%, 27%, 65.1% and 12.9%, 25.3%, 61.8%, and the evaporation of the soil in the young orchard is greater than that of the forest soil, but the transpiration of the fruit tree is greater than that of the young fruit tree, and the soil evaporation and the transpiration of the fruit tree all increase first and then decrease in the observation period, and the amount of soil evaporation is released in June. The maximum value of vegetation transpiration occurred in July, which is closely related to the environment and the growth status of fruit trees.
【學(xué)位授予單位】:中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:S661.1;S152.7

【相似文獻(xiàn)】

相關(guān)期刊論文 前6條

1 李志;劉文兆;張勛昌;;CLIGEN非降水要素在黃土塬區(qū)的適用性評(píng)估[J];自然資源學(xué)報(bào);2009年02期

2 程立平;劉文兆;李志;;黃土塬區(qū)不同土地利用方式下深層土壤水分變化特征[J];生態(tài)學(xué)報(bào);2014年08期

3 張曉龍,趙景波,馬潤(rùn)花;西安黃土塬區(qū)土壤碳釋放規(guī)律研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2004年02期

4 王銳;劉文兆;宋獻(xiàn)方;;黃土塬區(qū)土壤水分運(yùn)動(dòng)的氫氧穩(wěn)定同位素特征研究[J];水土保持學(xué)報(bào);2014年03期

5 甘卓亭;張掌權(quán);陳靜;劉文兆;周正朝;;黃土塬區(qū)蘋果園土壤有機(jī)碳分布特征[J];生態(tài)學(xué)報(bào);2010年08期

6 ;[J];;年期

相關(guān)會(huì)議論文 前7條

1 程建遠(yuǎn);郗昭;;黃土塬區(qū)深部煤炭地層平均速度變化規(guī)律研究[A];礦山地質(zhì)災(zāi)害成災(zāi)機(jī)理與防治技術(shù)研究與應(yīng)用[C];2009年

2 唐漢平;蔡文芮;李林元;朱書階;;黃土塬區(qū)地震勘探技術(shù)與應(yīng)用[A];第3屆全國(guó)煤炭工業(yè)生產(chǎn)一線青年技術(shù)創(chuàng)新文集[C];2008年

3 葉紅星;;黃土塬地震激發(fā)條件選擇[A];礦山地質(zhì)災(zāi)害成災(zāi)機(jī)理與防治技術(shù)研究與應(yīng)用[C];2009年

4 王世洪;張友焱;齊小平;文百紅;夏響華;張宗元;;遙感化探信息在黃土塬區(qū)油氣勘探中的綜合應(yīng)用及效果[A];第五屆全國(guó)油氣化探學(xué)術(shù)會(huì)議材料匯編[C];2004年

5 郗昭;程建遠(yuǎn);宋國(guó)龍;楊光明;蔡文芮;;地震勘探在黃土塬區(qū)深部煤炭資源勘查中的應(yīng)用[A];礦山地質(zhì)災(zāi)害成災(zāi)機(jī)理與防治技術(shù)研究與應(yīng)用[C];2009年

6 張?jiān)略?;黃土塬區(qū)地震勘探測(cè)量方法研究[A];中國(guó)地質(zhì)學(xué)會(huì)、中國(guó)煤炭學(xué)會(huì)、中國(guó)煤田地質(zhì)專業(yè)委員會(huì)2005年會(huì)論文集[C];2005年

7 鄔達(dá)理;;黃土塬地區(qū)的一次靜校正處理及質(zhì)量控制[A];中國(guó)地球物理學(xué)會(huì)第22屆年會(huì)論文集[C];2006年

相關(guān)重要報(bào)紙文章 前8條

1 宋尚智 黃委西峰水土保持科學(xué)試驗(yàn)站高工;黃土塬區(qū)的地下水資源開發(fā)利用[N];黃河報(bào);2013年

2 郭望邋何登貴;推開黃土塬上希望之門[N];中國(guó)石化報(bào);2008年

3 武勇 王繼發(fā);破解黃土塬油氣勘探世界級(jí)難題[N];中國(guó)礦業(yè)報(bào);2001年

4 本報(bào)記者 王喜春;奮戰(zhàn)黃土塬[N];中國(guó)石化報(bào);2011年

5 張海舟 王文忠 李學(xué)仁;黃土塬物探會(huì)診 眾專家把脈支招[N];中煤地質(zhì)報(bào);2009年

6 范立民 李岳鵬;陜西局兩項(xiàng)成果獲陜西省科學(xué)技術(shù)獎(jiǎng)[N];中煤地質(zhì)報(bào);2005年

7 蔣穎穎 魏桂花;甘肅局一技術(shù)研究成果國(guó)內(nèi)領(lǐng)先[N];中煤地質(zhì)報(bào);2013年

8 束榮華 楊哲;特色技術(shù)“摳出”鄂爾多斯油氣[N];中國(guó)石化報(bào);2011年

相關(guān)博士學(xué)位論文 前1條

1 韓曉陽(yáng);黃土塬區(qū)農(nóng)田生態(tài)系統(tǒng)水-碳通量特征及產(chǎn)量時(shí)程演變趨勢(shì)[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2016年

相關(guān)碩士學(xué)位論文 前10條

1 陳曦;基于環(huán)境示蹤劑的黃土高塬溝壑區(qū)水循環(huán)機(jī)制的研究[D];西北農(nóng)林科技大學(xué);2015年

2 曹躍輝;鄂爾多斯盆地黃土塬區(qū)隴東-鎮(zhèn)北地區(qū)非縱地震采集方法研究[D];西安石油大學(xué);2015年

3 王石言;黃土塬區(qū)蘋果園土壤水文特征及蒸散規(guī)律[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2016年

4 郗昭;黃土塬區(qū)地震波場(chǎng)的數(shù)值模擬與實(shí)例研究[D];西安科技大學(xué);2010年

5 郭子華;巨厚黃土塬區(qū)激發(fā)問題正演研究[D];太原理工大學(xué);2012年

6 銀燕慧;黃土塬山地地震資料處理方法研究[D];中國(guó)地質(zhì)大學(xué)(北京);2006年

7 高國(guó)成;柯克亞周緣地區(qū)黃土塬采集技術(shù)研究[D];中國(guó)石油大學(xué);2010年

8 錢春華;黃土塬地區(qū)強(qiáng)橫向變速構(gòu)造成像方法應(yīng)用研究[D];成都理工大學(xué);2013年

9 杜中東;蘇203井區(qū)黃土塬區(qū)碳酸鹽巖儲(chǔ)層三維地震勘探技術(shù)研究[D];長(zhǎng)安大學(xué);2013年

10 隋婷;榆中縣黃土塬區(qū)降雨分配試驗(yàn)研究[D];蘭州大學(xué);2014年



本文編號(hào):2073269

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/nykj/2073269.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b819f***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com