領域知識引導的作物模型參數(shù)智能優(yōu)化框架研究
本文選題:作物生長模型 + 遺傳算法; 參考:《南京農(nóng)業(yè)大學》2015年碩士論文
【摘要】:作物模型是以作物生長發(fā)育機理為基礎,對作物生理過程與環(huán)境和技術的關系加以理論概括和量化分析的數(shù)學模型,已經(jīng)在農(nóng)作物估產(chǎn)、農(nóng)田管理決策等領域廣泛應用。作物模型在應用過程中需要針對不同環(huán)境條件重新優(yōu)化其品種參數(shù)。遺傳算法作為一種高效的啟發(fā)式搜索技術,已在作物生長模型參數(shù)優(yōu)化問題中得到了良好的應用。但存在以下問題:由于作物模型本身結(jié)構(gòu)復雜、實測數(shù)據(jù)誤差、參數(shù)智能優(yōu)化過程環(huán)節(jié)眾多,給作物模型參數(shù)智能優(yōu)化帶來了很大的不確定性;由于遺傳算法的隨機搜索機制,會導致優(yōu)化過程中出現(xiàn)目標擬合較好但不符合生理學特性的優(yōu)化結(jié)果;隨著模型的廣泛應用,模型不確定性評價、參數(shù)智能優(yōu)化等工作需要借助計算機軟件工具進行快速實現(xiàn),但目前的軟件工具功能單一,難以面向通用的作物模型領域廣泛應用。針對上述問題,論文主要貢獻包括:(1)分析基于協(xié)同進化遺傳算法的水稻生長模型參數(shù)優(yōu)化框架(BGA-CMPOF)的不確定性。BGA-CMPOF中的不確定性來源包括:實測數(shù)據(jù)誤差、適應度函數(shù)設計、參數(shù)優(yōu)化策略、優(yōu)化算法性能等環(huán)節(jié),本文設計了評價BGA-CMPOF框架不確定性的策略,從目標變量選擇、適應度權重設置、分階段參數(shù)優(yōu)化策略以及不同優(yōu)化算法等角度,分析了 BGA-CMPOF在RiceGrow水稻生長模型參數(shù)優(yōu)化中的不確定性。以汕優(yōu)63在徐州等地的實測數(shù)據(jù)進行試驗,結(jié)果表明:1)BGA-CMPOF框架可有效優(yōu)化RiceGrow模型品種參數(shù),各參數(shù)優(yōu)化的相對誤差在7%以內(nèi);2)選取LAI、各器官(莖、葉、穗)生物量作為目標變量的效果較好,穗生物量、總生物量、LAI的NRMSE分別減小了 0.32%、1.52%和 1.73%,RMSE 分別減小了 8kg/ha、123.1 kg/ha、0.08;MAD分別減小了 5.44 kg/ha、105.1 kg/ha、0.07;3)分階段參數(shù)優(yōu)化策略對于BGA-CMPOF而言效果不明顯,各目標NRMSE的差距1%;4)MECA算法比IAGA算法的優(yōu)化精度略高,但耗時較長,不利于模型參數(shù)的快速優(yōu)化。(2)提出基于領域知識引導遺傳算法的作物生育期模型參數(shù)優(yōu)化方法。建立作物模型參數(shù)智能優(yōu)化領域知識庫,通過約束模型初始參數(shù)范圍、確定調(diào)參關鍵物候期、擴展物候期實測值、提煉方向算子等環(huán)節(jié),對基于遺傳算法的作物模型參數(shù)優(yōu)化框架進行約束和引導。本文以WheatGrow小麥生育期模型為應用對象,針對濟南13號小麥品種在徐州、濟寧、濰坊、臨沂等地的實測數(shù)據(jù)的參數(shù)優(yōu)化試驗結(jié)果表明:1)四個地點的初步試驗驗證結(jié)果的RMSE分別達到了:1.51d、2.05d、0.72d和1.08d,R2均0.99,MAD分別為1.1d、1.6d、0.55d和0.8d,模擬效果較好,但部分參數(shù)存在不符合生物學特性的參數(shù)值;2)通過約束參數(shù)PVT的初始范圍[30,40],加入品種參數(shù)范圍約束后,各地點的調(diào)參結(jié)果的各項指標均有小幅增加,RMSE分別為 1.67d、2.12d、1.09d和 1.58d,R2均0.99,MAD 分別為 1.4d、1.6d、0.8d和 1.3d,但PVT的參數(shù)值均符合濟南13號半冬性的品種特性;3)擴展關鍵物候期的實測值后,四地的驗證結(jié)果RMSE分別為1.24d、1.56d、1.22d和1.48d,R2分別為0.997、0.993、0.997和0.991,MAD分別為1d、1.2d、1.8d和1.2d,并且品種參數(shù)IE符合生物學特性,結(jié)果表明,擴展調(diào)參物候期數(shù)據(jù)進行參數(shù)優(yōu)化,在保證優(yōu)化效果的同時,能夠起到約束品種參數(shù)的作用。4)加入方向算子后,IAGA算法的收斂代數(shù)分別減少了 8代和3代,方向算子能夠加快算法的收斂速度。(3)研制作物模型參數(shù)優(yōu)化及不確定性分析工具(CMPOAT)采用構(gòu)件化軟件中基于框架的軟件開發(fā)方法,開發(fā)基于動態(tài)組裝框架的作物模型自動調(diào)參及不確定性分析工具,能夠根據(jù)用戶需求,實現(xiàn)作物模型、進化算法、數(shù)據(jù)處理等業(yè)務的動態(tài)組裝。系統(tǒng)實現(xiàn)了:數(shù)據(jù)管理與分析、作物模型分析、調(diào)參計算、專家知識庫管理、組件庫管理等功能。以WheatGrow模型和IAGA算法為對象的應用案例表明,CMPOAT能夠分析作物模型不確定性并進行模型參數(shù)優(yōu)化,為作物模型的分析和應用提供了有力的軟件工具。
[Abstract]:The crop model is a mathematical model based on the mechanism of crop growth and development and the theoretical generalization and quantitative analysis of the relationship between crop physiological process and environment and technology. It has been widely used in the fields of crop yield estimation and farmland management decision. As an efficient heuristic search technique, genetic algorithm has been well applied in the parameter optimization of crop growth model. However, the following problems are as follows: because the structure of the crop model is complex, the measured data error and the parameter intelligent optimization process are numerous, it has brought a great deal to the intelligent optimization of the crop model parameters. As a result of the stochastic search mechanism of genetic algorithm, the optimization results will lead to the optimization results of better target fitting but not in conformity with the physiological characteristics. With the extensive application of the model, the model uncertainty evaluation and parameter intelligent optimization need to be implemented quickly with the aid of computer software tools, but the current software tools are used. The main contributions of this paper are as follows: (1) the uncertainty sources in the uncertainty.BGA-CMPOF of the parameter optimization framework of the rice growth model (BGA-CMPOF) based on Coevolutionary Genetic Algorithm (coevolutionary genetic algorithm) include the measured data error, the fitness function design, and the parameter design. In this paper, the strategy of evaluating the uncertainty of BGA-CMPOF framework is designed in this paper. The uncertainty of BGA-CMPOF in the parameter optimization of RiceGrow rice growth model is analyzed from the selection of the target variables, the setting of fitness weight, the optimization strategy of the phased parameters and the different optimization algorithms. Experiments were conducted in Xuzhou and other places. The results showed that: 1) the BGA-CMPOF framework could effectively optimize the parameter of RiceGrow model, and the relative error of each parameter was less than 7%; 2) LAI was selected as the target variable, and the ear biomass, total biomass, and NRMSE of LAI were reduced by 0.32%, 1.52% respectively. And 1.73%, RMSE reduced 8kg/ha, 123.1 kg/ha, 0.08; MAD decreased 5.44 kg/ha, 105.1 kg/ha, 0.07; 3). The phase parameter optimization strategy is not obvious to BGA-CMPOF, the gap 1% of each target NRMSE, 4) MECA algorithm is slightly higher than IAGA algorithm, but it takes longer time and is not conducive to the rapid optimization of model parameters. (2) The parameter optimization method of crop growth period model based on domain knowledge guided genetic algorithm is proposed. The knowledge base of intelligent optimization field of crop model parameters is set up. By restricting the range of the initial parameters of the model, the key phenology period of the adjustment parameter, the measured value of the phenology period and the direction operator are refined, and the parameter of the crop model based on the genetic algorithm is obtained. The optimization of the framework for constraints and guidance. This paper takes the WheatGrow wheat growth period model as the application object. The results of the parameters optimization test of the measured data of Ji'nan No. 13 wheat variety in Xuzhou, Jining, Weifang, Linyi and other places show that: 1) the preliminary test of four locations verified that the results of the results were as follows: 1.51d, 2.05d, 0.72d and 1.08d, R2 0 respectively. .99, MAD are 1.1d, 1.6d, 0.55d and 0.8d, and the simulation results are better, but some parameters have the parameter values that do not conform to the biological characteristics; 2) after the restriction of the initial range [30,40] of the parameters of the parameter PVT, the parameters of the parameters of the parameter range of the local points are increased slightly, and RMSE is 1.67d, 2.12d, 1.09d, and, respectively. All 0.99, MAD are 1.4d, 1.6d, 0.8d and 1.3d respectively, but the parameters of PVT are in line with Ji'nan 13 and half winter variety characteristics; 3) after expanding the measured values of the key phenology, the verification results of the four regions are 1.24d, 1.56D, 1.22d and 1.48d, respectively, and 0.991, respectively. According to the biological characteristics, the results show that the parameter optimization of the phenology period data is extended, while the effect of the optimization is guaranteed, while the effect of the constrained variety parameters can be played.4), the convergence algebra of the IAGA algorithm is reduced by 8 and 3 generations respectively. The direction operator can speed up the convergence speed of the algorithm. (3) to develop the parameter of the crop model. Optimization and uncertainty analysis tool (CMPOAT) adopts a framework based software development method in component-based software, and develops a tool for automatic parameter adjustment and uncertainty analysis of crop models based on dynamic assembly framework. It can implement the dynamic assembly of crop model, evolutionary algorithm and data processing based on user requirements. According to management and analysis, crop model analysis, parameter calculation, expert knowledge base management, component library management and other functions. The application cases of WheatGrow model and IAGA algorithm show that CMPOAT can analyze crop model uncertainty and optimize model parameters, and provide a powerful software tool for crop model analysis and application.
【學位授予單位】:南京農(nóng)業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:S126;TP18
【參考文獻】
相關期刊論文 前10條
1 孫美;張曉琳;馮紹元;霍再林;;基于PEST的RZWQM2模型參數(shù)優(yōu)化與驗證[J];農(nóng)業(yè)機械學報;2014年11期
2 宋明丹;馮浩;李正鵬;高建恩;;基于Morris和EFAST的CERES-Wheat模型敏感性分析[J];農(nóng)業(yè)機械學報;2014年10期
3 花海燕;林述溫;沈振輝;;復雜構(gòu)件結(jié)構(gòu)智能優(yōu)化約束表達與處理新方法[J];中國機械工程;2014年08期
4 王禮恒;董艷輝;李國敏;張騰;;基于PEST的地下水數(shù)值模擬參數(shù)優(yōu)化的應用[J];工程勘察;2014年03期
5 任長江;白丹;周蓓蓓;梁偉;周文;程鵬;;基于遺傳算法的非飽和溶質(zhì)運移參數(shù)優(yōu)化[J];農(nóng)業(yè)機械學報;2013年09期
6 楊習清;謝軍紅;;基于混合PSO算法的西北干旱區(qū)作物灌溉制度優(yōu)化設計[J];節(jié)水灌溉;2013年08期
7 孫琳麗;馬玉平;景元書;俄有浩;鄒艷東;邢開瑜;;基于約束性分析的數(shù)據(jù)與作物模型同化方法[J];應用氣象學報;2013年03期
8 花海燕;林述溫;;優(yōu)化過程知識引導的挖掘機動臂結(jié)構(gòu)優(yōu)化設計新策略[J];中國工程機械學報;2013年03期
9 莊嘉祥;姜海燕;劉蕾蕾;王芳芳;湯亮;朱艷;曹衛(wèi)星;;基于個體優(yōu)勢遺傳算法的水稻生育期模型參數(shù)優(yōu)化[J];中國農(nóng)業(yè)科學;2013年11期
10 劉鋼;老松楊;侯綠林;譚東風;;知識引導的智能優(yōu)化算法在航路規(guī)劃中的應用[J];湖南大學學報(自然科學版);2013年01期
相關博士學位論文 前4條
1 姜志偉;區(qū)域冬小麥估產(chǎn)的遙感數(shù)據(jù)同化技術研究[D];中國農(nóng)業(yè)科學院;2012年
2 劉蕾蕾;氣候變化、品種更新和管理措施對我國水稻生育期及產(chǎn)量影響的研究[D];南京農(nóng)業(yè)大學;2012年
3 席琳;形式化方法在構(gòu)件組裝實時系統(tǒng)中的應用研究[D];鄭州大學;2012年
4 熊偉;未來氣候變化情景下中國主要糧食作物生產(chǎn)模擬[D];中國農(nóng)業(yè)大學;2004年
,本文編號:2066083
本文鏈接:http://sikaile.net/kejilunwen/nykj/2066083.html