長期菌渣還田對土壤磷素形態(tài)及有效性的影響
本文選題:菌渣 + 化肥; 參考:《浙江農(nóng)林大學(xué)》2015年碩士論文
【摘要】:磷是作物營養(yǎng)三要素之一,磷肥在農(nóng)業(yè)生產(chǎn)中被大規(guī)模使用,雖保證了種植物的高產(chǎn)穩(wěn)產(chǎn),但由此也帶來嚴重的土壤和水體污染問題。近年來我國食用菌產(chǎn)業(yè)迅速發(fā)展,隨意丟棄廢棄物菌渣等亦造成資源浪費和環(huán)境污染。據(jù)研究,食用菌渣中含有大量的木質(zhì)素及礦質(zhì)元素,可以作為農(nóng)業(yè)生產(chǎn)中良好的有機肥料和土壤改良劑,對土壤磷素營養(yǎng)供應(yīng)具有較高的利用價值。為揭示菌渣還田對稻田生態(tài)系統(tǒng)磷元素的豐缺影響,本文以浙江省嘉興市王店鎮(zhèn)五浪園基地大田為研究對象,以不同培肥措施對土壤磷生物有效性的影響為研究內(nèi)容,采用大田定位試驗和室內(nèi)分析化驗,揭示土壤磷素動態(tài)變化特征,探討菌渣還田對稻田土壤磷素狀況影響的變化機理。大田試驗從2010年5月開始,到2014年5月結(jié)束,布置9個不同化肥與菌渣配施比例處理(處理1:C0F0;處理2:C0F50;處理3:C0F100;處理4:C50F0;處理5:C50F50;處理6:C50F100;處理7:C100F0;處理8:C100F50;處理9:C100F100,其中C表化肥,F表菌渣)。通過分析2010年5月和2014年5月土壤樣品的差異,研究菌渣還田對土壤中不同形態(tài)無機磷的豐缺變化、有機磷和全磷對土壤的給養(yǎng)狀況以及稻田生態(tài)系統(tǒng)養(yǎng)分平衡的影響。主要結(jié)果如下:(1)懫用改進的Hedley磷分級法,通過長期定位試驗分析測定了4種不同的無機磷形態(tài)。結(jié)果表明:不同肥料配施的處理對土壤4種不同形態(tài)磷素含量的增幅效果不同,其中菌渣和化肥配施明顯提高了活性無機磷NaHCO3-P的含量,與單施化肥和單施菌渣的處理相比,增長顯著。菌渣和化肥配施對穩(wěn)定性高的HCl-P和殘渣態(tài)磷影響不大,說明菌渣和化肥配施對難溶態(tài)磷的作用不明顯。長期不施肥的處理土壤中的無機磷因持續(xù)的作物吸收而含量逐漸下降,且難溶態(tài)磷也具有一定的有效性,起到了補充磷源的作用。(2)以Hedley磷分級體系為基礎(chǔ),本試驗土壤表層磷素以無機磷為主體,占全磷總量的77.8%~84.2%,有機磷只有15.8%~22.2%。按活性高低分,以高穩(wěn)定性磷(殘渣態(tài)磷)為主,占到53.4%;其次為中等活性磷(NaOH-P,HCl-P),所占比例為為39.5%;活性無機磷含量最低(NaHCO3-P),僅占全磷量的10.1%。長期菌渣和化肥配施下各處理表現(xiàn)為無機磷含量與有機磷含量均有所增加。與背景值相比,不施肥的土壤中Hedley磷分級中各組分含量變化基本一致,活性較高的NaHCO3-P和NaOH-P含量均顯著降低,而穩(wěn)定程度較高的HCl-P和殘渣態(tài)磷含量沒有明顯變化。表明長期不施化肥土壤中的活性磷含量顯著降低,而穩(wěn)定性磷含量沒有明顯變化。(3)長期菌渣和化肥配施能顯著增加供試土壤中全磷含量,但是不同施肥處理對土壤全磷含量的增加幅度不同。長期菌渣還田條件下,單施化肥比單施菌渣提升全磷總量效果明顯,而單施菌渣全磷沒有明顯增加。而長期菌渣和化肥配施條件下,隨著菌渣的施入,土壤全磷量顯著增長。(4)長期菌渣和化肥配施能顯著增加供試土壤中有機磷和速效磷含量。在施肥各處理中,長期單施化肥土壤中的有機磷含量沒有顯著增加,長期施用菌渣則能顯著提高土壤中的有機磷含量;而長期單施化肥能顯著提高土壤速效磷含量,長期施用菌渣對土壤速效磷沒有顯著影響。綜上所述,通過菌渣和化肥的合理配施,來協(xié)調(diào)不同形態(tài)磷的比例可以促進作物的高產(chǎn)和磷肥的節(jié)約,是土壤可持續(xù)發(fā)展的重要手段。
[Abstract]:Phosphorus is one of the three elements of crop nutrition. Phosphate fertilizer is widely used in agricultural production. Although it has guaranteed high and stable yield of plant, it also brings serious pollution problems of soil and water. In recent years, the mushroom industry in China has developed rapidly. The waste and environmental pollution are also caused by random discarding of waste fungi. According to research, edible fungi The residue contains a large number of lignin and mineral elements, which can be used as a good organic fertilizer and soil improvement agent in agricultural production, and has a high utilization value for soil phosphorus nutrient supply. This is to reveal the effect of microbial residue on the phosphorus in the paddy ecosystem. This paper is based on the five wave garden base in Wang Dian Town, Jiaxing, Zhejiang. The effect of Different Fertilizer Cultivation Measures on soil phosphorus bioavailability was studied. The dynamic change characteristics of soil phosphorus were revealed by the field location test and laboratory analysis, and the mechanism of the effect of microbial residue on the phosphorus status in the paddy soil was discussed. The field experiment started from May 2010 to the end of May 2014 and arranged 9. Different fertilizers and bacteria residue were proportions (treatment of 1:C0F0; treatment of 2:C0F50; treatment of 3:C0F100; treatment of 4:C50F0; treatment of 5:C50F50; treatment of 6:C50F100; treatment of 7:C100F0; treatment of 8:C100F50; processing 9:C100F100, in which C chemical fertilizers, F surface bacteria residue). By analyzing the differences in soil samples in May 2010 and May 2014, the difference between the soil and soil was studied in the soil. The main results are as follows: (1) 4 different inorganic phosphorus forms were determined by the modified Hedley phosphorus classification method by long-term location test. The results showed that 4 kinds of soil were treated with different fertilizer treatments. The increasing effect of the same phosphorus content was different, in which the addition of bacteria residue and chemical fertilizer obviously increased the content of active inorganic phosphorus NaHCO3-P. Compared with the treatment of single application of chemical fertilizer and single application of bacteria residue, the addition of bacteria residue and chemical fertilizer had little influence on the high stability of HCl-P and residue phosphorus. It is not obvious that the content of inorganic phosphorus in the soil which is not fertilized for a long time has been gradually decreased because of continuous crop absorption, and the insoluble phosphorus also has some effectiveness. (2) based on the Hedley phosphorus classification system, the soil surface phosphorus is mainly inorganic phosphorus, which accounts for 77.8%~84.2% of total phosphorus. Only 15.8%~22.2%. is divided into 53.4% of high stable phosphorus (residue phosphorus), followed by medium active phosphorus (NaOH-P, HCl-P), the proportion is 39.5%, the content of active inorganic phosphorus is the lowest (NaHCO3-P), and the 10.1%. long-term residue and chemical fertilizer of only the total phosphorus content are expressed as inorganic phosphorus content and organophosphorus content. Compared with the background value, the content of each component in the Hedley phosphorus classification in the soil without fertilizer was basically the same, the content of NaHCO3-P and NaOH-P with higher activity decreased significantly, but the content of HCl-P and residual phosphorus in the soil with higher stability was not obviously changed, indicating that the content of active phosphorus in the soil of long-term non fertilizer application was significantly reduced. There was no obvious change in the content of phosphorus. (3) the total phosphorus content in the tested soil was significantly increased by the long-term residue and chemical fertilizer application, but the total phosphorus content in the soil was increased by different fertilization treatments. With the application of long-term bacterial residue and chemical fertilizer, the amount of total phosphorus in soil increased significantly with the application of bacterial residue. (4) the content of organophosphorus and available phosphorus in the tested soil could be significantly increased by long-term bacterial residue and chemical fertilizer application. Increasing the content of organophosphorus in soil, while long-term single fertilization can significantly increase the content of available phosphorus in soil. Long term application of bacteria residue has no significant effect on available phosphorus in soil. An important means of development.
【學(xué)位授予單位】:浙江農(nóng)林大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2015
【分類號】:S158
【相似文獻】
相關(guān)期刊論文 前10條
1 王乃英;;關(guān)于抗生素菌渣的利用[J];當代畜牧;1992年01期
2 周松林;菌渣的利用——生產(chǎn)燃氣[J];食用菌;2002年01期
3 周松林;就“菌渣的利用——生產(chǎn)燃氣”答讀者問[J];食用菌;2002年04期
4 江同均;菌渣的妙用[J];食用菌;2002年05期
5 閆寶松,馬鳳,張躍新,孟憲勇;廢棄菌渣二次利用及環(huán)保處理方法[J];中國林副特產(chǎn);2005年04期
6 周天錄;;菌渣還田變廢為寶[J];湖南農(nóng)業(yè);2007年01期
7 周保華;高勤;王洪華;李志超;王冬浩;;青霉素、土霉素菌渣研究利用現(xiàn)狀及特性分析[J];河北工業(yè)科技;2011年05期
8 賈明;陸建忠;尹君;;菌渣直接還田對設(shè)施大棚內(nèi)土壤理化性狀影響初探[J];食用菌;2012年03期
9 徐康銘;呂蔚;王鴻磊;秦娜;鄒積華;丁強;;雙孢菇菌渣養(yǎng)殖蠐螬技術(shù)初探[J];北方園藝;2012年22期
10 丁強;呂蔚;徐康銘;王鴻磊;秦娜;崔從光;鄒積華;;雙孢菇菌渣養(yǎng)殖蠐螬技術(shù)研究(英文)[J];Agricultural Science & Technology;2013年01期
相關(guān)會議論文 前5條
1 宮志遠;;食用菌菌渣綜合研究與利用現(xiàn)狀[A];第九屆全國食用菌學(xué)術(shù)研討會論文集[C];2010年
2 李建國;尹微琴;奚云龍;儲亞云;;秸稈循環(huán)利用技術(shù)與農(nóng)業(yè)可持續(xù)發(fā)展研究[A];江蘇土壤肥料科學(xué)與農(nóng)業(yè)環(huán)境[C];2004年
3 宮志遠;;食用菌菌渣綜合研究與利用現(xiàn)狀[A];第九屆全國食用菌學(xué)術(shù)研討會摘要集[C];2010年
4 陳海波;李艷菊;王悅;王宇洲;梁山琴;馮絲雨;萬淑珍;饒嘉健;;金霉素菌渣生物降解特性研究[A];2013中國環(huán)境科學(xué)學(xué)會學(xué)術(shù)年會論文集(第五卷)[C];2013年
5 宋婷婷;蔡為明;范麗軍;金群力;馮偉林;沈穎越;;以金針菇菌渣和稻草為基礎(chǔ)兩種雙孢蘑菇堆肥理化性質(zhì)與微生物群落動態(tài)比較分析[A];第十屆全國食用菌學(xué)術(shù)研討會論文匯編[C];2014年
相關(guān)重要報紙文章 前10條
1 通訊員 孟蕾 記者 郭東;全省三成多抗生素菌渣將被轉(zhuǎn)化[N];河北日報;2012年
2 楊代軍 本報記者 陳泳;菌渣集中放 廢物變肥料[N];成都日報;2006年
3 云家春邋何駿天 本報記者 汪光輝;菌渣做木炭垃圾換成錢[N];成都日報;2008年
4 通訊員 孟蕾 記者 周迎久;讓菌渣不再是危廢[N];中國環(huán)境報;2013年
5 本報通訊員 孟蕾 本報見習(xí)記者 孟然 本報記者 周潔;抗生素菌渣消“毒”變“寶”[N];河北日報;2013年
6 王道全;一紙建議 廢渣變寶[N];四川政協(xié)報;2005年
7 吳桐 蘭波 鐘麗娟 李雪林;金堂走出了一條食用菌菌渣循環(huán)經(jīng)濟之路[N];成都日報;2010年
8 曹建軍邋馬友晟 趙遂;金壇市“吃干榨盡”農(nóng)業(yè)廢棄物[N];農(nóng)民日報;2007年
9 楊靜;貴陽市把菇農(nóng)廢棄菌渣變成“寶”[N];貴州日報;2008年
10 本報記者 曹小佳;什邡擬建廢渣利用激勵機制[N];中國環(huán)境報;2009年
相關(guān)博士學(xué)位論文 前1條
1 孫西寧;抗生素菌渣的改性及其對重金屬吸附性能研究[D];西北農(nóng)林科技大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 劉曉梅;杏鮑菇菌渣纖維素降解菌的篩選、復(fù)合菌劑構(gòu)建及應(yīng)用[D];中國農(nóng)業(yè)科學(xué)院;2015年
2 米靜靜;菌渣對廢水中Pb(Ⅱ)和Cd(Ⅱ)吸附性能的研究[D];西北農(nóng)林科技大學(xué);2015年
3 高妍;基于厭氧消化的青霉素菌渣無害化處理技術(shù)研究[D];河北科技大學(xué);2015年
4 馮振凱;長期菌渣還田對土壤磷素形態(tài)及有效性的影響[D];浙江農(nóng)林大學(xué);2015年
5 羅婷;菌渣還田對土壤環(huán)境效應(yīng)的影響研究[D];四川農(nóng)業(yè)大學(xué);2009年
6 朱瑩;土霉素菌渣利用和處置過程環(huán)境風(fēng)險評價體系的研究[D];哈爾濱工業(yè)大學(xué);2013年
7 苑麗梅;頭孢菌渣中殘留效價檢測方法及菌渣資源化可行性研究[D];哈爾濱工業(yè)大學(xué);2014年
8 苗楊;青霉素菌渣風(fēng)險評價體系及其管理體系框架構(gòu)建研究[D];哈爾濱工業(yè)大學(xué);2014年
9 王志華;野生大型真菌菌渣制備及其肥效的初步研究[D];江西農(nóng)業(yè)大學(xué);2014年
10 蔡翔;可利霉素菌渣作為氮源的再利用研究[D];河南大學(xué);2011年
,本文編號:2045708
本文鏈接:http://sikaile.net/kejilunwen/nykj/2045708.html