長(zhǎng)期施肥管理變更后稻田土壤甲烷排放研究
本文選題:CH_4排放 + 水稻土; 參考:《湖南農(nóng)業(yè)大學(xué)》2015年碩士論文
【摘要】:基于30年水稻土長(zhǎng)期施肥定位試驗(yàn),在保證原有定位試驗(yàn)正常開展的前提下,將部分化肥處理變更為有機(jī)肥處理(或反之),得到4種新處理:常量有機(jī)肥改為化肥(N-C),高量有機(jī)肥改為化肥(H-C),化肥改為常量有機(jī)肥(C-N),常量有機(jī)肥改為高量有機(jī)肥(N-H)及3種原有處理:化肥(CF),常量有機(jī)肥(NOM),高量有機(jī)肥(HOM),共7個(gè)施肥處理。自2012至2014年,通過連續(xù)觀測(cè)兩年水稻輪作周期內(nèi)不同處理CH4排放通量季節(jié)變化,探討不同有機(jī)碳水平水稻土上外源有機(jī)碳及土壤有機(jī)碳含量對(duì)田間CH4排放的影響。結(jié)果表明:施化肥處理全年CH4排放通量范圍在-0.18 mg·m-2·h-1~3.75 mg·m-2·h-1之間變化,施有機(jī)肥處理全年CH4排放通量范圍在-0.04mg·m-2·h-1~75.89mg·m-2·h-1之間變化。有機(jī)肥處理改施化肥后田間土壤CH4的排放量顯著降低,化肥處理改施有機(jī)肥或有機(jī)肥處理增施有機(jī)肥后田間土壤CH4的排放量顯著提高。外源有機(jī)碳的輸入量是決定田間CH4年排放量的決定性因素,外源有機(jī)碳輸入量(x)與水稻土CH4年累積排放量(y)之間滿足直線方程:y=0.1677x+2.746(R2=0.9642,n=21)。土壤有機(jī)碳同樣也是影響稻田CH4排放的因素,在不同有機(jī)碳水平的水稻土上施用等量相同化肥或有機(jī)肥,土壤有機(jī)碳含量高的水稻土都更有利于CH4的產(chǎn)生。單施化肥稻田土壤有機(jī)碳含量(x)和水稻土CH4年累積排放量(y)之間的指數(shù)方程:y=0.5154x-4.3454(R2=0.932,n=9)。有機(jī)肥可促進(jìn)土壤有機(jī)碳分解釋放CH4,土壤有機(jī)碳含量相同的條件下,高量有機(jī)肥比常量有機(jī)肥的土壤有機(jī)碳分解比率高1.52%,等量相同有機(jī)肥但土壤有機(jī)碳含量不同的條件下,土壤有機(jī)碳分解比率無顯著差異;同樣,土壤有機(jī)碳也可促進(jìn)有機(jī)物料碳分解釋放CH4,在常量有機(jī)肥或高量有機(jī)肥處理中,土壤有機(jī)碳含量高者比低者的有機(jī)物料碳分解比率分別多出3.29%和2.52%。
[Abstract]:Based on the long-term fertilization experiment of paddy soil for 30 years, under the premise of ensuring the original location test to be carried out normally, By changing part of chemical fertilizer treatment to organic fertilizer treatment (or vice versa), four new treatments were obtained: conversion of constant organic fertilizer to chemical fertilizer N-Cn, heavy organic fertilizer to chemical fertilizer H-CX, chemical fertilizer to constant organic fertilizer to C-NN, and constant organic fertilizer to high quantity organic fertilizer. N-H) and three original treatments: CFN, NOMN, HOMN, 7 fertilization treatments. From 2012 to 2014, the effects of exogenous organic carbon and soil organic carbon content on Ch _ 4 emission from paddy soils with different organic carbon levels were investigated by observing the seasonal changes of Ch _ 4 emission fluxes from different treatments during two successive cropping cycles. The results showed that the flux range of CH4 emission varied from -0.18 mg m-2 h-1h -1 to -0.04 mg m-2 h-1~75.89mg m-2 h-1 in the whole year under chemical fertilizer application and from -0.04 mg m-2 h-1~75.89mg m-2 h-1 to -0.04 mg m-2 h-1~75.89mg m-2 h-1 in organic fertilizer treatment. The emission of Ch _ 4 from field soil decreased significantly after organic fertilizer treatment and organic fertilizer treatment or organic fertilizer treatment increased the field soil Ch _ 4 emission. The input amount of exogenous organic carbon is the decisive factor to determine the annual emission of CH4 in the field. The linear equation between the input amount of exogenous organic carbon (x) and the annual cumulative discharge of CH4 in paddy soil is 1: y0. 1677x 2.746 R2 (0.9642). Soil organic carbon is also a factor affecting Ch _ 4 emission in paddy fields. Applying the same amount of chemical fertilizer or organic fertilizer to paddy soil with different organic carbon levels, the paddy soil with high organic carbon content is more conducive to Ch _ 4 production. The exponential equation between the soil organic carbon content of paddy field and the annual accumulative discharge of Ch _ 4 in paddy soil is: y0. 0. 5154x-4. 3454N ~ (2) ~ (2) ~ 0. 932n ~ (2). Organic fertilizer can promote the decomposition and release of CH4 from soil organic carbon. Under the condition of the same content of soil organic carbon, the decomposition ratio of soil organic carbon of high organic fertilizer is 1.52% higher than that of constant organic fertilizer, and the same amount of organic fertilizer but different content of soil organic carbon. There is no significant difference in soil organic carbon decomposition ratio; similarly, soil organic carbon can also promote the release of CH4 from organic materials, which can be used in the treatment of constant organic fertilizer or high organic fertilizer. The decomposition ratio of organic materials with high soil organic carbon content was 3.29% and 2.52% higher than that of low organic materials, respectively.
【學(xué)位授予單位】:湖南農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:S154.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 黎華壽,王建武;有機(jī)肥產(chǎn)業(yè)畜禽糞便的高效利用[J];中國(guó)家禽;2001年24期
2 黃鴻翔;李書田;李向林;姚杰;曹衛(wèi)東;王敏;劉榮樂;;我國(guó)有機(jī)肥的現(xiàn)狀與發(fā)展前景分析[J];土壤肥料;2006年01期
3 錢國(guó)平;邱寧寧;胡江湖;;安徽有機(jī)肥利用現(xiàn)狀分析及激勵(lì)機(jī)制探討[J];中國(guó)農(nóng)技推廣;2007年04期
4 王志林;倪春青;張麗;張爽;;施用有機(jī)肥與單一施用化肥的試驗(yàn)結(jié)果對(duì)比[J];農(nóng)業(yè)科技通訊;2008年04期
5 梁彩枝;;農(nóng)村有機(jī)肥減少原因與對(duì)策[J];新農(nóng)業(yè);2009年01期
6 ;化肥搭配有機(jī)肥施用好處多[J];江西棉花;2010年01期
7 解培惠;;金楝有機(jī)肥施用新法[J];農(nóng)家之友;2010年12期
8 王允圃;劉玉環(huán);阮榕生;曾穩(wěn)穩(wěn);楊柳;李積華;劉成梅;萬益琴;;有機(jī)肥改良農(nóng)產(chǎn)品品質(zhì)的科學(xué)探索[J];中國(guó)農(nóng)學(xué)通報(bào);2011年09期
9 鐘太洋;黃賢金;王柏源;;非農(nóng)業(yè)就業(yè)對(duì)農(nóng)戶施用有機(jī)肥的影響[J];中國(guó)土地科學(xué);2011年11期
10 過慈明;惠富平;;近代江南地區(qū)化肥和有機(jī)肥使用變化研究[J];中國(guó)農(nóng)史;2012年01期
相關(guān)會(huì)議論文 前10條
1 黃紅英;常志州;朱萬寶;馬艷;葉小梅;張建英;沙國(guó)棟;;有機(jī)肥與無公害農(nóng)產(chǎn)品生產(chǎn)(Ⅱ)——有機(jī)肥使用可能產(chǎn)生的負(fù)面影響[A];江蘇土壤肥料科學(xué)與農(nóng)業(yè)環(huán)境[C];2004年
2 董元華;王輝;;我國(guó)有機(jī)肥標(biāo)準(zhǔn)化管理問題的思考[A];第四次全國(guó)土壤生物和生物化學(xué)學(xué)術(shù)研討會(huì)論文集[C];2007年
3 李興盛;;有機(jī)肥的農(nóng)業(yè)利用效果[A];四川省循環(huán)經(jīng)濟(jì)發(fā)展模式(Ⅰ)——污泥再生利用[C];2005年
4 常志州;黃紅英;季國(guó)軍;辛紅霞;何加駿;;有機(jī)肥與無公害農(nóng)產(chǎn)品生產(chǎn)(Ⅰ)——有機(jī)肥在減少作物病害中的作用[A];江蘇土壤肥料科學(xué)與農(nóng)業(yè)環(huán)境[C];2004年
5 李淑儀;鄭惠典;廖新榮;張育燦;藍(lán)佩玲;林日強(qiáng);徐勝光;;無公害蔬菜的有機(jī)肥合理施用量探討[A];第九屆中國(guó)青年土壤科學(xué)工作者學(xué)術(shù)討論會(huì)暨第四屆中國(guó)青年植物營(yíng)養(yǎng)與肥料科學(xué)工作者學(xué)術(shù)討論會(huì)論文集[C];2004年
6 楊思存;霍琳;王建成;蘆滿濟(jì);;有機(jī)肥中養(yǎng)分潛量及其再用的意義研究——以白銀市興電灌區(qū)北灘鄉(xiāng)為例[A];循環(huán)農(nóng)業(yè)與新農(nóng)村建設(shè)——2006年中國(guó)農(nóng)學(xué)會(huì)學(xué)術(shù)年會(huì)論文集[C];2006年
7 張德純;;科學(xué)施用肥料,提高農(nóng)產(chǎn)品質(zhì)量安全[A];第七屆全國(guó)綠色環(huán)保肥料(農(nóng)藥)新技術(shù)、新產(chǎn)品交流會(huì)論文集[C];2008年
8 馮建國(guó);陳偉e,
本文編號(hào):2027012
本文鏈接:http://sikaile.net/kejilunwen/nykj/2027012.html