基于CLDAS強(qiáng)迫CLM3.5模式的新疆區(qū)域土壤溫度陸面過(guò)程模擬及驗(yàn)證
本文選題:土壤溫度 + CLM.; 參考:《生態(tài)學(xué)報(bào)》2017年03期
【摘要】:利用中國(guó)氣象局國(guó)家氣象信息中心研發(fā)的中國(guó)氣象局陸面數(shù)據(jù)同化系統(tǒng)(China Meteorological Administration Land Data Assimilation System,CLDAS)大氣近地面強(qiáng)迫資料,驅(qū)動(dòng)美國(guó)國(guó)家大氣研究中心公用陸面模式(Community Land Model,CLM3.5),對(duì)中國(guó)新疆地區(qū)土壤溫度時(shí)空分布進(jìn)行逐小時(shí)Off-line模擬(模擬時(shí)段為2009—2012年);利用國(guó)家土壤溫度自動(dòng)站(新疆區(qū)域105站點(diǎn))數(shù)據(jù)驗(yàn)證CLDAS驅(qū)動(dòng)場(chǎng)強(qiáng)迫下的CLM3.5模式在中國(guó)新疆地區(qū)3個(gè)土壤層(5cm、20cm和80cm)的土壤溫度模擬能力。研究發(fā)現(xiàn):在月變化方面,第1層(5cm)土壤溫度模擬與實(shí)測(cè)值差異最大,在每年7月最大差異達(dá)5k左右;第2層(20cm)在每年7月達(dá)最大差異(3k左右),而第3層(80cm)在每年7月均模擬的很好。造成這種現(xiàn)象的原因可能因?yàn)樾陆貐^(qū)7月前后淺層土壤溫度變化劇烈,溫度白天最高可達(dá)300K以上,晝夜溫差大,導(dǎo)致模式不能很好抓住淺層土壤溫度的變化趨勢(shì)。研究還發(fā)現(xiàn),在80cm土壤深度,模式在1月、12月的模擬結(jié)果均較前兩層差。在日變化方面,研究發(fā)現(xiàn):較淺的兩層(5cm和20cm)土壤溫度模擬值在夏季和秋季均較差。與月變化模擬結(jié)果類似的是,80cm土壤層日變化在1、12月模擬較差,然而在其他時(shí)段卻模擬的很好。在小時(shí)變化方面,分析發(fā)現(xiàn):第1層土壤(5cm)模擬結(jié)果在每年的1—4月及9—11月的全天(即24 h),模式也會(huì)有不同的偏差:其中,在03UTC—21UTC之間主要表現(xiàn)為模式結(jié)果比觀測(cè)結(jié)果偏高,而在日內(nèi)21UTC—00UTC主要表現(xiàn)為模擬結(jié)果偏小。在每年的5—8月,全天模擬值都偏小,其中在09UTC達(dá)當(dāng)日最大值。而距離第2層(20cm)處的土壤溫度模擬值在大部分月份都偏差較小(-1K至1k之間),并在日內(nèi)12UTC偏差達(dá)到當(dāng)日最大值。研究發(fā)現(xiàn),在土壤20cm處,模式模擬的最大值較觀測(cè)值提前,而第3層(80cm)的土壤溫度基本不受日內(nèi)變化影響,表現(xiàn)較為平穩(wěn)。造成這種影響的原因可能是因?yàn)樾陆貐^(qū)5—8月、9—11月為晝夜溫差大,深層土壤溫度較淺層土壤溫度溫差變化小,這也造成了模式對(duì)于淺層土壤模擬較深層差的主要原因。總體研究表明:CLDAS驅(qū)動(dòng)場(chǎng)強(qiáng)迫下的CLM3.5模式可較為精確的模擬中國(guó)新疆地區(qū)多年平均土壤溫度時(shí)空分布,并較為準(zhǔn)確的反映中國(guó)新疆地區(qū)土壤溫度的小時(shí)、日、月及年際的變化規(guī)律。模式淺溫度模擬不好的原因可能與模式參數(shù)化方案及地表參數(shù)有關(guān),后期將繼續(xù)修正該問(wèn)題。
[Abstract]:Using the atmospheric near-surface forcing data of China Meteorological Administration Land data Assimilation system CLDAS-developed by the National Meteorological Information Center of China Meteorological Administration, the land surface data assimilation system of China Meteorological Administration is used. Driving the National Atmospheric Research Center Common Land Model CLM 3.5, the hourly Off-line simulation of soil temperature distribution in Xinjiang, China is carried out (the simulation period is 2009-2012), and the national soil temperature automatic station (Xinjiang region) is used to simulate the soil temperature distribution. The soil temperature simulation ability of CLM3.5 model forced by CLDAS driving field in three soil layers (20cm and 80cm) in Xinjiang region of China was verified by the data from the 105 site. The results show that the difference between the simulated and measured values of soil temperature in the first layer (5 cm) is the largest, and the maximum difference is about 5 k in July every year. The second layer (20 cm) has the largest difference of about 3 k in July, while the third layer (80 cm) simulates well in July of each year. The reason for this phenomenon may be that the temperature of shallow soil in Xinjiang region changes sharply before and after July, the highest temperature can be more than 300K during the day, and the diurnal temperature difference is large, which leads to the model can not grasp the change trend of shallow soil temperature very well. It was also found that at the soil depth of 80cm, the simulation results of the model in January and December were worse than those of the first two layers. In terms of diurnal variation, it was found that the simulated values of soil temperature in the two shallower layers of 5 cm and 20 cm were worse in summer and autumn. The results are similar to those of monthly variation. The diurnal variation of 80 cm soil layer is in January, but the simulation in December is not good. However, in other periods, the simulation is very good. In terms of hourly variation, it was found that the simulated results of the first layer of soil were different from those of the whole day (i.e. 24 h) in January-April and September-November of each year: among them, Between 03UTC-21UTC, the model results are higher than the observed ones, while the in-day 21UTC-00UTC results show that the simulation results are small. In May-August of each year, the full-day simulation value is small, and the maximum value is reached at 09UTC. The simulated values of soil temperature at the distance of 20 cm from the second layer were smaller in most months and reached the maximum of 12UTC in the day. It was found that the maximum value of the model was earlier than the observed value at the soil 20cm, while the soil temperature of the third layer (80cm) was not affected by the variation in the day, and the soil temperature was stable. The reason for this effect may be that the temperature difference between day and night is larger in May / August and September / November in Xinjiang, and the temperature difference of deep soil is smaller than that of shallow soil, which also causes the main reason that the model is worse for simulating shallow soil. The overall study shows that the CLM3.5 model forced by the drive field of the: CLDAS can accurately simulate the temporal and spatial distribution of the average soil temperature in Xinjiang, China, and more accurately reflect the hours and days of soil temperature in Xinjiang, China. The law of change between months and years. The reason for the bad simulation of model shallow temperature may be related to the model parameterization scheme and surface parameters, and the problem will continue to be corrected at a later stage.
【作者單位】: 中國(guó)水利水電科學(xué)研究院;新疆大學(xué)干旱生態(tài)環(huán)境研究所;中國(guó)氣象局國(guó)家氣象信息中心;中國(guó)科學(xué)院寒區(qū)旱區(qū)環(huán)境與工程研究所冰凍圈科學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室;中國(guó)科學(xué)院新疆生態(tài)與地理研究所;中國(guó)氣象局華云信息技術(shù)工程有限公司;
【基金】:水利部公益性行業(yè)科研專項(xiàng)經(jīng)費(fèi)(201301103) 國(guó)家自然科學(xué)基金重點(diǎn)項(xiàng)目(41130531)
【分類號(hào)】:S152.8
【參考文獻(xiàn)】
相關(guān)期刊論文 前9條
1 李瑋;張佳寶;張叢志;;秸稈掩埋還田對(duì)黃淮海平原耕層土壤溫度及作物生長(zhǎng)的影響[J];生態(tài)環(huán)境學(xué)報(bào);2012年02期
2 ;China land soil moisture EnKF data assimilation based on satellite remote sensing data[J];Science China(Earth Sciences);2011年09期
3 任芝花;趙平;張強(qiáng);張志富;曹麗娟;楊燕茹;鄒鳳玲;趙煜飛;趙慧敏;陳哲;;適用于全國(guó)自動(dòng)站小時(shí)降水資料的質(zhì)量控制方法[J];氣象;2010年07期
4 沈艷;馮明農(nóng);張洪政;高峰;;我國(guó)逐日降水量格點(diǎn)化方法[J];應(yīng)用氣象學(xué)報(bào);2010年03期
5 師春香;謝正輝;;基于靜止氣象衛(wèi)星觀測(cè)的降水時(shí)間降尺度研究[J];地理科學(xué)進(jìn)展;2008年04期
6 劉少鋒,林朝暉;通用陸面模式CLM在東亞不同典型下墊面的驗(yàn)證試驗(yàn)[J];氣候與環(huán)境研究;2005年03期
7 黃偉,郭振海,宇如聰;CLM在淮河流域數(shù)值模擬試驗(yàn)[J];氣象學(xué)報(bào);2004年06期
8 戴永久,薛峰,曾慶存;A Land Surface Model(IAP94)for Climate Studies Part II: Implementation and Preliminary Results of Coupled Model with IAP GCM[J];Advances in Atmospheric Sciences;1998年01期
9 董振國(guó);作物層溫度與土壤水分的關(guān)系[J];科學(xué)通報(bào);1986年08期
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 姜艷陽(yáng);王文;周正昊;;MODIS MOD16蒸散發(fā)產(chǎn)品在中國(guó)流域的質(zhì)量評(píng)估[J];自然資源學(xué)報(bào);2017年03期
2 謝志鵬;胡澤勇;劉火霖;孫根厚;楊耀先;藺筠;黃芳芳;;陸面模式CLM4.5對(duì)青藏高原高寒草甸地表能量交換模擬性能的評(píng)估[J];高原氣象;2017年01期
3 何媛;文軍;黃彥彬;張?zhí)锰?賴欣;康悅;余海;;黃河源區(qū)土壤濕度時(shí)空分布的模擬研究[J];高原氣象;2017年01期
4 王飛宇;占車生;胡實(shí);賈仰文;牛存穩(wěn);鄒靖;;典型山地蒸散發(fā)時(shí)空變化模擬研究[J];資源科學(xué);2017年02期
5 許孌;董美瑩;陳鋒;;基于逐時(shí)降水站點(diǎn)資料空間插值方法對(duì)比研究[J];氣象與環(huán)境學(xué)報(bào);2017年01期
6 Hemin SUN;Guojie WANG;Xiucang LI;Jing CHEN;Buda SU;Tong JIANG;;Regional Frequency Analysis of Observed Sub-Daily Rainfall Maxima over Eastern China[J];Advances in Atmospheric Sciences;2017年02期
7 張超;;同化數(shù)據(jù)在氣候適宜度區(qū)域化模型中的應(yīng)用[J];中國(guó)農(nóng)學(xué)通報(bào);2017年01期
8 吳嫻;王玉;莊亮;;基于高分辨率格點(diǎn)數(shù)據(jù)集的中國(guó)氣溫與降水時(shí)空分布及變化趨勢(shì)分析[J];氣象與減災(zāi)研究;2016年04期
9 吳書成;魏爽;王麗吉;胡永亮;滕舟;陳晴;;自動(dòng)氣象站降水實(shí)時(shí)快速質(zhì)控算法設(shè)計(jì)[J];氣象科技;2016年06期
10 于楊;朱晨;趙琦;徐文慧;楊溯;江慧;李慶祥;沈秋宇;;全球地面氣溫和降水定時(shí)值數(shù)據(jù)整合與初步質(zhì)量控制[J];氣象與環(huán)境學(xué)報(bào);2016年06期
【二級(jí)參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李天玉;董敏;;玉米秸稈還田激發(fā)增效效應(yīng)研究[J];現(xiàn)代農(nóng)業(yè)科技;2011年17期
2 常曉慧;孔德剛;井上光弘;劉立意;張影微;蘇錦濤;;秸稈還田方式對(duì)春播期土壤溫度的影響[J];東北農(nóng)業(yè)大學(xué)學(xué)報(bào);2011年05期
3 劉武仁;鄭金玉;羅洋;鄭洪兵;李瑞平;李偉堂;;玉米秸稈還田對(duì)土壤呼吸速率的影響[J];玉米科學(xué);2011年02期
4 胡高峰;鄭寧衛(wèi);胡占強(qiáng);;高茬粉碎玉米秸稈還田效果研究[J];現(xiàn)代農(nóng)業(yè)科技;2010年11期
5 ;A soil moisture assimilation scheme based on the ensemble Kalman filter using microwave brightness temperature[J];Science in China(Series D:Earth Sciences);2009年11期
6 張強(qiáng);阮新;熊安元;;近57年我國(guó)氣溫格點(diǎn)數(shù)據(jù)集的建立和質(zhì)量評(píng)估[J];應(yīng)用氣象學(xué)報(bào);2009年04期
7 ;An explicit four-dimensional variational data assimilation method based on the proper orthogonal decomposition: Theoretics and evaluation[J];Science in China(Series D:Earth Sciences);2009年02期
8 張生雷;謝正輝;師春香;陳鋒;;集合Kalman濾波在土壤濕度同化中的應(yīng)用[J];大氣科學(xué);2008年06期
9 竇以文;屈玉貴;陶士偉;胡保昆;;北京自動(dòng)氣象站實(shí)時(shí)數(shù)據(jù)質(zhì)量控制應(yīng)用[J];氣象;2008年08期
10 ;A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing[J];Science in China(Series D:Earth Sciences);2008年07期
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張慧智;史學(xué)正;于東升;王洪杰;趙永存;孫維俠;黃寶榮;;中國(guó)土壤溫度的季節(jié)性變化及其區(qū)域分異研究[J];土壤學(xué)報(bào);2009年02期
2 姜燕敏;吳昊e,
本文編號(hào):2017976
本文鏈接:http://sikaile.net/kejilunwen/nykj/2017976.html