葉片偏振高光譜特征及葉綠素含量估算模型研究
本文選題:偏振遙感 + 植物葉片; 參考:《廣西師范學(xué)院》2017年碩士論文
【摘要】:植物是地球表面廣泛存在的一種地物,而葉片是植物進(jìn)行光合作用、養(yǎng)分轉(zhuǎn)化、呼吸及蒸騰作用的重要器官。植物葉片的葉綠素含量是反映植物的光合作用能力和營(yíng)養(yǎng)供給情況的重要生理指標(biāo),是農(nóng)作物生長(zhǎng)發(fā)育和受災(zāi)狀況的指示器。遙感技術(shù)因其獲取信息量大、周期短、客觀等特點(diǎn)和在持續(xù)、動(dòng)態(tài)跟蹤監(jiān)測(cè)方面的優(yōu)勢(shì),被廣泛應(yīng)用于農(nóng)作物生化參數(shù)的估算當(dāng)中。與傳統(tǒng)光學(xué)和輻射遙感方法相比,偏振光遙感由于偏振信息的多維特性,因而在農(nóng)作物自動(dòng)觀測(cè)中具有更獨(dú)特的優(yōu)勢(shì)。為此,本文通過(guò)對(duì)多種植物和葉片的偏振光譜觀測(cè)實(shí)驗(yàn),對(duì)不同植物葉片的偏振高光譜及其與葉綠素含量之間的關(guān)系進(jìn)行了研究,以期找出兩者的相關(guān)關(guān)系。并通過(guò)偏振反射光譜反演植物的葉綠素含量,進(jìn)而了解作物的生長(zhǎng)狀況和受災(zāi)情況。該研究可為應(yīng)用偏振光對(duì)農(nóng)作物進(jìn)行遙感自動(dòng)觀測(cè),以及作物的偏振光遙感識(shí)別、分類(lèi)和應(yīng)用研究提供科學(xué)依據(jù)和技術(shù)支撐。完成的主要研究工作如下:(1)利用偏振成像地面實(shí)驗(yàn)平臺(tái),從不同方位對(duì)植物目標(biāo)進(jìn)行了偏振觀測(cè)實(shí)驗(yàn)。通過(guò)對(duì)前向、側(cè)向、后向三個(gè)方位的ri圖像對(duì)比,發(fā)現(xiàn)前向的圖像中目標(biāo)的偏振度較大,信息最為豐富,側(cè)向次之,而后向圖像中所包含的信息最少,因此,針對(duì)植物目標(biāo)特性的偏振探測(cè)應(yīng)以前向方位為主。(2)利用室內(nèi)多角度觀測(cè)平臺(tái)和加裝了偏振片的ASD光譜儀,對(duì)具有毛刺、絨毛和蠟質(zhì)層等不同表面特征的植物葉片進(jìn)行了偏振光譜實(shí)驗(yàn)研究。通過(guò)對(duì)實(shí)驗(yàn)結(jié)果的對(duì)比及分析,發(fā)現(xiàn)葉片表面毛刺越多、絨毛越多、蠟質(zhì)層越薄,其偏振反射越低;葉片的三種特征中對(duì)偏振度的影響最大是蠟質(zhì)層,毛刺次之,絨毛的影響相對(duì)較小;蠟質(zhì)層對(duì)偏振反射和偏振度的影響均非常明顯。(3)利用室內(nèi)多角度觀測(cè)平臺(tái)、加裝了偏振片的ASD光譜儀和葉綠素儀,對(duì)多種光滑葉片的葉綠素含量與偏振高光譜的相關(guān)關(guān)系進(jìn)行了實(shí)驗(yàn)研究。通過(guò)分析偏振高光譜與葉綠素含量的關(guān)系,建立了基于綠峰偏振光特性的葉綠素含量估算模型,并進(jìn)行了精度評(píng)價(jià)。結(jié)果表明,對(duì)于光滑葉片而言,在420~720nm測(cè)量范圍內(nèi),550nm附近綠峰波段的偏振度與葉綠素含量的關(guān)系最好,其次為偏振反射,再次為最高反射和總反射,最低反射的關(guān)系最不明顯;谄穸鹊闹笖(shù)形式葉綠素含量估算模型,其R2和RMSE分別為0.7527和9.5759,且通過(guò)了信度0.01的顯著性檢驗(yàn),可用于葉綠素含量的估算。
[Abstract]:Plant is one of the most important organs of photosynthesis, nutrient transformation, respiration and transpiration on the surface of the earth. The chlorophyll content of plant leaves is an important physiological index to reflect the photosynthesis ability and nutrition supply of plants. It is also an indicator of the growth and development of crops and the disaster condition. Remote sensing technology is widely used in the estimation of biochemical parameters of crops because of its characteristics of large amount of information, short period, objective and so on, as well as its advantages in continuous and dynamic tracking and monitoring. Compared with traditional optical and radiometric remote sensing methods, polarized remote sensing has more unique advantages in crop automatic observation because of the multidimensional characteristics of polarization information. In order to find out the correlation between the polarization hyperspectrum and chlorophyll content of different plant leaves, this paper studied the relationship between the polarization hyperspectrum and chlorophyll content of different plant leaves by means of the polarizing spectrum observation experiments of many kinds of plants and leaves in order to find out the correlation between the polarization hyperspectrum and the chlorophyll content of different plant leaves. The chlorophyll content of the plant was retrieved by polarization reflectance spectroscopy, and then the crop growth and the disaster situation were understood. The research can provide scientific basis and technical support for remote sensing automatic observation of crops with polarized light, as well as the recognition, classification and application of polarized light for crops. The main work of this paper is as follows: (1) Polarimetric observation experiments on plant targets are carried out from different directions using polarization imaging ground experiment platform. By comparing the ri images with three directions: forward, lateral and backward, it is found that the polarization degree of the target in the forward image is large, the information is the most abundant, the side is the second, and the information in the backward image is the least, so, The polarization detection of plant target should be based on forward azimuth.) the indoor multi-angle observation platform and the ASD spectrometer with polarizer are used. The polarizing spectra of plant leaves with different surface characteristics, such as fluff and waxy layer, were studied experimentally. Through the comparison and analysis of the experimental results, it is found that the more burr, the more fluff, the thinner the waxy layer, and the lower the polarization reflection of the leaf surface, the more the waxy layer is the most important one among the three characteristics of the leaf, the second is the burr. The effect of fluff on polarization reflection and degree of polarization is very obvious.) using indoor multi-angle observation platform, ASD spectrometer and chlorophyll meter with polarizer are added. The correlation between chlorophyll content and polarization hyperspectral of various smooth leaves was studied experimentally. Based on the analysis of the relationship between the polarization hyperspectrum and chlorophyll content, the estimation model of chlorophyll content based on the characteristics of green peak polarized light was established and the accuracy was evaluated. The results show that, for smooth leaves, the relationship between the degree of polarization and chlorophyll content in the green band around 550 nm is the best in the 420~720nm measurement range, followed by the polarization reflection, the highest reflection and the total reflection, and the lowest reflection is the least obvious. The estimation model of chlorophyll content in exponential form based on polarization is 0.7527 and 9.5759 for R2 and 9.5759, respectively, and it can be used to estimate chlorophyll content through the significance test of reliability 0.01.
【學(xué)位授予單位】:廣西師范學(xué)院
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:S127
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 盧霞;;沿海灘涂棉花葉片葉綠素含量高光譜遙感估算模型研究[J];安徽農(nóng)業(yè)科學(xué);2011年12期
2 徐新剛;吳炳方;蒙繼華;李強(qiáng)子;黃文江;劉良云;王紀(jì)華;;農(nóng)作物單產(chǎn)遙感估算模型研究進(jìn)展[J];農(nóng)業(yè)工程學(xué)報(bào);2008年02期
3 張正斌;作物水分利用效率和蒸發(fā)蒸騰估算模型的研究進(jìn)展[J];干旱地區(qū)農(nóng)業(yè)研究;1997年01期
4 楊曦光;范文義;于穎;;森林葉綠素含量的高光譜遙感估算模型的建立[J];森林工程;2010年02期
5 姚付啟;張振華;楊潤(rùn)亞;孫金偉;崔素芳;;基于紅邊參數(shù)的植被葉綠素含量高光譜估算模型[J];農(nóng)業(yè)工程學(xué)報(bào);2009年S2期
6 吳國(guó)金;許鐘;楊憲時(shí);郭全友;李學(xué)英;;冰鮮魚(yú)貯運(yùn)過(guò)程中耗冰量估算模型的建立與驗(yàn)證[J];中國(guó)水產(chǎn)科學(xué);2010年06期
7 徐永明;藺啟忠;王璐;黃秀華;;基于高分辨率反射光譜的土壤營(yíng)養(yǎng)元素估算模型[J];土壤學(xué)報(bào);2006年05期
8 程乾;;基于MOD09產(chǎn)品的水稻葉面積指數(shù)和葉綠素含量的遙感估算模型[J];應(yīng)用生態(tài)學(xué)報(bào);2006年08期
9 張永賀;陳文惠;郭喬影;張清林;;桉樹(shù)葉片光合色素含量高光譜估算模型[J];生態(tài)學(xué)報(bào);2013年03期
10 李鳳濤;魯欣欣;王珍珍;楊錦忠;;基于多光譜特征的玉米生物參量估算模型[J];青島農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年03期
相關(guān)會(huì)議論文 前2條
1 趙輝;唐丹玲;王素芬;;南海西北部夏季葉綠素濃度的分布特征及其對(duì)海洋環(huán)境的響應(yīng)[A];中國(guó)海洋學(xué)會(huì)2005年學(xué)術(shù)年會(huì)論文匯編[C];2005年
2 焦全軍;張霞;衛(wèi)征;陳良富;張兵;;基于葉片光譜的森林葉綠素濃度反演研究[A];第十五屆全國(guó)遙感技術(shù)學(xué)術(shù)交流會(huì)論文摘要集[C];2005年
相關(guān)博士學(xué)位論文 前2條
1 程志慶;基于高光譜信息的楊樹(shù)人工林生產(chǎn)力遙感估算模型的研究[D];中國(guó)林業(yè)科學(xué)研究院;2015年
2 鄭龍江;光纖式海藻葉綠素a濃度的熒光測(cè)量理論與實(shí)驗(yàn)研究[D];燕山大學(xué);2002年
相關(guān)碩士學(xué)位論文 前10條
1 秦川;葉片偏振高光譜特征及葉綠素含量估算模型研究[D];廣西師范學(xué)院;2017年
2 張小萍;黃土高原溝壑區(qū)太陽(yáng)輻射時(shí)空分布特征及估算模型研究[D];西北農(nóng)林科技大學(xué);2015年
3 柳燁;參考作物蒸發(fā)蒸騰量的少因子估算模型研究[D];西北農(nóng)林科技大學(xué);2016年
4 王靜;基于衛(wèi)星遙感的長(zhǎng)三角主要城市PM2.5估算[D];華東師范大學(xué);2016年
5 劉桂鵬;基于高光譜遙感的玉米冠層參數(shù)及葉綠素估算模型研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
6 賀婷;玉米氮素營(yíng)養(yǎng)監(jiān)測(cè)的高光譜遙感估算模型研究[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
7 何斐璐;承包商視角下的改進(jìn)掙得值法研究[D];西南交通大學(xué);2015年
8 孫超;軟件估算模型的演化控制技術(shù)研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年
9 劉夏菁;基于高光譜數(shù)據(jù)的冬小麥葉綠素含量估算模型[D];河北師范大學(xué);2017年
10 徐鵬飛;面向農(nóng)業(yè)的臺(tái)風(fēng)災(zāi)害風(fēng)險(xiǎn)評(píng)估[D];華東師范大學(xué);2017年
,本文編號(hào):2017345
本文鏈接:http://sikaile.net/kejilunwen/nykj/2017345.html