不同管理措施對(duì)土壤水氣傳輸性質(zhì)的影響研究
本文選題:土壤飽和導(dǎo)水率 + 土壤導(dǎo)氣率; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文
【摘要】:為了研究不同管理措施對(duì)土壤水氣傳輸性的影響,分別以位于黃土塬區(qū)的陜西省長武縣的黑壚土及位于水蝕風(fēng)蝕交錯(cuò)區(qū)的陜西省神木縣六道溝流域的沙黃土為研究對(duì)象,對(duì)黃土塬區(qū)不同耕作覆蓋措施對(duì)土壤理化性狀(特別是水氣傳輸性)和作物農(nóng)藝性狀的影響進(jìn)行研究,主要測定了不同耕作覆蓋下土壤水分、溫度、容重、硬度、飽和導(dǎo)水率、導(dǎo)氣率、相對(duì)氣體擴(kuò)散率、全氮、全磷、速效磷、株高、葉面積指數(shù)、產(chǎn)量等;同時(shí)對(duì)黃土高原水蝕風(fēng)蝕交錯(cuò)區(qū)不同土地利用類型(撂荒地、檸條地、苜蓿地、裸地和農(nóng)地)和不同退耕年限下土壤孔隙結(jié)構(gòu)變化和水氣傳輸性變化進(jìn)行研究,主要測定土壤容重、總孔隙度、充氣孔隙度(100cmH2O基質(zhì)吸力)、飽和導(dǎo)水率、導(dǎo)氣率和相對(duì)氣體擴(kuò)散率等。研究結(jié)果表明:(1)在黃土塬區(qū)的定位試驗(yàn)下,免耕處理降低了土壤容重,提高了土壤飽和導(dǎo)水率和4月下旬至10月上旬表層土壤含水量,使土壤硬度增加,造成土壤板結(jié),降低了作物出苗期溫度,降低了成熟期土壤全磷與速效磷含量,降低了株高、葉面積指數(shù)和產(chǎn)量。而地膜覆蓋極顯著增加了土壤容重(P0.01),顯著降低了土壤飽和導(dǎo)水率(P0.05),降低了成熟期土壤有機(jī)質(zhì)、全氮含量,有較為明顯的保持和調(diào)節(jié)溫度的作用,可縮小地溫的晝夜變幅,此外不同類型的地膜覆蓋均能極顯著提高玉米株高和葉面積指數(shù)進(jìn)而提高產(chǎn)量(P0.01)。秸稈覆蓋對(duì)土壤容重和含水量的影響與耕作方式有關(guān):翻耕條件下,秸稈覆蓋增加了土壤容重;免耕條件下,降低了土壤容重且變化幅度均不顯著。翻耕+秸稈覆蓋土壤表層含水量最高;免耕+秸稈覆蓋處理的土壤含水量最低。翻耕+秸稈覆蓋可以有效起到抗旱作用,在降雨期間可降低峰值、延緩峰值到來,并在降雨后防止表層含水量迅速降低起到保水的作用;免耕+秸稈覆蓋隨著降雨的補(bǔ)給土壤含水量變化的幅度最大,對(duì)降雨的響應(yīng)最為敏感,含水量隨時(shí)間變化最快并最早達(dá)到峰值,降雨結(jié)束后含水量下降速度最快。但秸稈覆蓋下土壤有機(jī)質(zhì)含量、全氮含量、作物株高、葉面積指數(shù)和產(chǎn)量與未覆蓋時(shí)相比均有增加,影響皆達(dá)到顯著水平(P0.05),且均有降低地表溫度的作用。秸稈覆蓋、地膜覆蓋均可有效減小免耕土壤硬度,但對(duì)傳統(tǒng)翻耕表層土壤硬度無顯著的影響。此外相同覆蓋條件下傳統(tǒng)耕作導(dǎo)氣率均大于免耕,除CP1外不同覆蓋類型均可增加傳統(tǒng)翻耕土壤導(dǎo)氣率和擴(kuò)散率,而降低免耕導(dǎo)氣率和擴(kuò)散率。(2)水蝕風(fēng)蝕交錯(cuò)區(qū)的定位試驗(yàn)表明,坡地土壤容重為苜蓿地農(nóng)地撂荒地,總孔隙度為苜蓿地農(nóng)地撂荒地,大孔隙(當(dāng)量孔徑φ≥30μm)孔隙度為撂荒地農(nóng)地苜蓿地,小孔隙(當(dāng)量孔徑φ≤30μm)孔隙度為農(nóng)地苜蓿地撂荒地。梯田土壤容重為苜蓿地裸地撂荒地檸條地農(nóng)地,總孔隙度為苜蓿地裸地撂荒地檸條地農(nóng)地,大孔隙(當(dāng)量孔徑φ≥30μm)孔隙度為農(nóng)地撂荒地檸條地裸地苜蓿地,小孔隙(當(dāng)量孔徑φ≤30μm)孔隙度為裸地苜蓿地檸條地農(nóng)地撂荒地。坡地、梯田苜蓿地土壤孔隙連通性、土壤導(dǎo)氣率和相對(duì)氣體擴(kuò)散率均顯著大于其他植被類型,土壤孔隙彎曲度顯著小于其他植被類型;而農(nóng)地土壤孔隙連通性和大孔隙連通性皆在所有土地利用方式中最小,土壤孔隙彎曲度最大;說明苜蓿地較農(nóng)地改善了土壤結(jié)構(gòu)和水氣傳輸性。(3)水蝕風(fēng)蝕交錯(cuò)區(qū)隨著退耕年限的增加(12a、15a、41a)撂荒地土壤容重(ρb)增加,總孔隙度(f)降低,大孔隙(當(dāng)量孔徑φ≥30μm)孔隙度增加,小孔隙(當(dāng)量孔徑φ≤30μm)孔隙度降低,土壤飽和導(dǎo)水率(ks)、導(dǎo)氣率(ka)和相對(duì)氣體擴(kuò)散率(Dp/D0)均增加;而苜蓿地土壤飽和導(dǎo)水率(ks)、導(dǎo)氣率(ka)和相對(duì)氣體擴(kuò)散率(Dp/D0)均降低。此外,隨著退耕年限的增加撂荒地土壤孔隙彎曲度增加,連通性減小,大孔隙的連通性增加;隨著年限的增加苜蓿地各處理土壤孔隙彎曲度差異未達(dá)到顯著水平,土壤孔隙連通性和大孔隙連通性均呈下降趨勢。(4)黑壚土和沙黃土分別對(duì)應(yīng)的土壤飽和導(dǎo)水率(ks)、導(dǎo)氣率(ka)和相對(duì)氣體擴(kuò)散率(Dp/D0)之間的相互關(guān)系顯示,ka與ks、(Dp/D0)與ks、ka與(Dp/D0)均呈顯著線性正相關(guān)關(guān)系。
[Abstract]:In order to study the influence of different management measures on the transport of soil water and gas, the sand loess in Changwu County, Shaanxi Province, located in the Loess Tableland and the six ditu valley of Shenmu county, Shaanxi Province, located in the water erosion wind erosion crisscross area, was studied. The soil physical and chemical properties (especially water and gas transmission) were carried out by different tillage coverage measures in the loess tableland area. The soil moisture, temperature, bulk density, hardness, saturation conductivity, gas conductivity, relative gas diffusivity, total nitrogen, total phosphorus, available phosphorus, plant height, leaf area index, yield and so on, and the different land use types of the water erosion wind erosion ecotone of the Loess Plateau (abandoned land use) were measured. Soil pore structure change and water gas transmission change under different years of cultivated land, Caragana land, alfalfa land, bare land and farmland, and the main determination of soil bulk density, total porosity, inflatable porosity (100cmH2O matrix suction), saturated water conductivity, gas conductivity and phase to gas diffusivity. The results show: (1) in the Loess Tableland Area Under the test, no tillage treatment reduced soil bulk density, increased soil saturated water conductivity and water content in the surface soil from late April to early October, made soil hardness increase, cause soil consolidation, reduced the temperature of crop seedling stage, reduced total phosphorus and available phosphorus content in mature soil, reduced plant height, leaf area index and yield. Soil bulk density significantly increased soil bulk density (P0.01), significantly reduced soil saturated water conductivity (P0.05), reduced soil organic matter and total nitrogen content in mature soil, and had a more obvious retention and adjustment of temperature, which could reduce the diurnal variation of soil temperature. In addition, different types of film mulching could significantly increase the height of maize plant and leaf area index. The effect of straw mulching on soil bulk density and water content was related to the tillage method: straw mulching increased soil bulk density under the ploughing condition. Under no tillage, the soil bulk density was reduced and the change amplitude was not significant. The soil moisture content of the soil layer covered with straw and straw mulching was the highest, and the soil moisture content treated with no tillage + straw mulching was water content. The amount of ploughing and straw mulching can effectively resist drought. During rainfall, it can reduce the peak value, postpone the peak arrival, and prevent the rapid decrease of water content in the surface of the surface. The quickest change with time and the earliest peak value, the water content drops fastest after the end of the rain. But the soil organic matter content, total nitrogen content, plant height, leaf area index and yield are all increased compared with that of uncovered, and the effect of soil organic matter content, leaf area index and yield has reached significant level (P0.05), and the effect of reducing surface temperature. Straw mulching, land Film mulching can effectively reduce the hardness of no tillage soil, but have no significant influence on soil hardness of traditional tillage surface. In addition, under the same cover conditions, the traditional cultivation rate of traditional tillage is greater than that of no tillage. In addition to CP1, the different cover types can increase the gas conductivity and diffusion rate of traditional tillage soil, and reduce the air conductivity and diffusion rate of no tillage. (2) water erosion wind erosion. The location test of the wrong area shows that the soil bulk density of the slope land is the abandoned land of the alfalfa farmland, the total porosity is the abandoned land of the alfalfa farmland, the porosity is the abandoned land alfalfa and the porosity is the abandoned land of the alfalfa, the porosity is the abandoned land of the alfalfa. The soil bulk density of the terrace is the bare land of the alfalfa land. Caragana farmland, the total porosity is the land of Caragana korshinskii in the bare land of alfalfa, the porosity (equivalent pore diameter, or more than 30 u m) is the bare land alfalfa in the abandoned land Caragana, and the porosity is the abandoned land of the Caragana land in the bare land. The soil pore connectivity and the soil conductivity of the soil in the alfalfa land. The rate and relative gas diffusion rate were significantly greater than that of other vegetation types, and the soil porosity flexural degree was significantly smaller than that of other vegetation types, while the porosity connectivity and macropore connectivity were the smallest in all land use ways and the soil porosity was the largest, indicating that the soil structure and the water and gas transmission were improved in the alfalfa land. (3) The soil bulk density (P B) of the abandoned land increased (12a, 15a, 41a) increased, the total porosity (f) decreased, the porosity of the large pore (equivalent pore diameter or 30 u m) increased, and the porosity of the small pore (equivalent pore diameter < 30 m) decreased, the soil saturation and water conductivity (KS), the gas conductivity (KA) and the relative gas diffusivity (Dp/D0) increased. The soil saturated water conductivity (KS), gas conductivity (KA) and relative gas diffusivity (Dp/D0) decreased in alfalfa soil. In addition, the soil porosity flexural degree increased, connectivity decreased and the connectivity of macropores increased with the increase of cultivated land. The relationship between pore connectivity and macropore connectivity showed a downward trend. (4) the relationship between soil saturated water conductivity (KS), gas conductivity (KA) and relative gas diffusion rate (Dp/D0) showed that both Ka and KS, (Dp/D0) and KS, Ka and (Dp/D0) had a significant linear correlation.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S152
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 柴曉虹;王理德;姚拓;韓福貴;魏林源;郭春秀;張瑩花;;石羊河中下游不同退耕年限次生草地土壤理化及生物學(xué)特性研究[J];草業(yè)學(xué)報(bào);2015年08期
2 王超;甄霖;杜秉貞;孫傳諄;;黃土高原典型區(qū)退耕還林還草工程實(shí)施效果實(shí)證分析[J];中國生態(tài)農(nóng)業(yè)學(xué)報(bào);2014年07期
3 高宇;樊軍;彭小平;王力;米美霞;;水蝕風(fēng)蝕交錯(cuò)區(qū)典型植被土壤水分消耗和補(bǔ)充深度對(duì)比研究[J];生態(tài)學(xué)報(bào);2014年23期
4 白一茹;王幼奇;展秀麗;;陜北農(nóng)牧交錯(cuò)帶土地利用方式對(duì)土壤物理性質(zhì)及分布特征的影響[J];中國農(nóng)業(yè)科學(xué);2013年08期
5 張建軍;王勇;樊廷錄;郭天文;趙剛;黨翼;王磊;李尚中;;耕作方式與施肥對(duì)隴東旱塬冬小麥-春玉米輪作農(nóng)田土壤理化性質(zhì)及產(chǎn)量的影響[J];應(yīng)用生態(tài)學(xué)報(bào);2013年04期
6 張仁陟;黃高寶;蔡立群;羅珠珠;李玲玲;謝軍紅;;幾種保護(hù)性耕作措施在黃土高原旱作農(nóng)田的實(shí)踐[J];中國生態(tài)農(nóng)業(yè)學(xué)報(bào);2013年01期
7 王升;王全九;董文財(cái);趙偉;;黃土坡面不同植被覆蓋度下產(chǎn)流產(chǎn)沙與養(yǎng)分流失規(guī)律[J];水土保持學(xué)報(bào);2012年04期
8 于國強(qiáng);李占斌;裴亮;李鵬;;不同植被類型下坡面徑流侵蝕產(chǎn)沙差異性[J];水土保持學(xué)報(bào);2012年01期
9 彭舜磊;由文輝;沈會(huì)濤;;植被群落演替對(duì)土壤飽和導(dǎo)水率的影響[J];農(nóng)業(yè)工程學(xué)報(bào);2010年11期
10 趙世偉;趙勇鋼;吳金水;;黃土高原植被演替下土壤孔隙的定量分析[J];中國科學(xué):地球科學(xué);2010年02期
相關(guān)博士學(xué)位論文 前1條
1 卜令鐸;旱地春玉米高產(chǎn)高效栽培體系構(gòu)建、評(píng)價(jià)及區(qū)域模擬[D];西北農(nóng)林科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 華瑞;黃土丘陵區(qū)不同退耕年限林草地土壤結(jié)構(gòu)及大孔隙研究[D];西北農(nóng)林科技大學(xué);2016年
2 喬艷琴;不同植被間土壤水分與養(yǎng)分競爭研究[D];西北農(nóng)林科技大學(xué);2015年
3 張少妮;林草植被恢復(fù)年限對(duì)土壤入滲過程的影響[D];西北農(nóng)林科技大學(xué);2015年
4 任利東;層狀土壤水分運(yùn)動(dòng)及其對(duì)紫花苜蓿生長的影響[D];西北農(nóng)林科技大學(xué);2015年
5 易彩瓊;水蝕風(fēng)蝕交錯(cuò)區(qū)坡地退耕草地的水轉(zhuǎn)化特征及養(yǎng)分流失研究[D];西北農(nóng)林科技大學(xué);2015年
6 師陽陽;黃土丘陵區(qū)不同退耕年限及模式下植被生長特征研究[D];西北農(nóng)林科技大學(xué);2013年
7 王勇志;基于時(shí)域傳輸原理的土壤水分測試儀的研究與開發(fā)[D];北京林業(yè)大學(xué);2013年
8 余菲;長武縣不同保護(hù)性耕作措施對(duì)土壤水分、肥力以及作物產(chǎn)量的影響研究[D];陜西師范大學(xué);2012年
9 李陸生;土壤導(dǎo)氣率測量方法與計(jì)算模型研究[D];魯東大學(xué);2012年
10 王衛(wèi)華;土壤導(dǎo)氣率變化特征試驗(yàn)研究[D];西安理工大學(xué);2008年
,本文編號(hào):1955072
本文鏈接:http://sikaile.net/kejilunwen/nykj/1955072.html