不同施肥下典型農(nóng)田氮素殘留特征及可利用性
本文選題:長(zhǎng)期施肥 + ~(15)N; 參考:《貴州大學(xué)》2015年碩士論文
【摘要】:我國(guó)氮肥傳統(tǒng)利用率僅為30%左右,遠(yuǎn)低于西方國(guó)家的50-60%。實(shí)際上,傳統(tǒng)氮肥利用率的計(jì)算方法僅考慮了當(dāng)季作物對(duì)養(yǎng)分的吸收利用,而沒(méi)有反映肥料氮在土壤中的殘留及可利用性。本研究通過(guò)對(duì)我國(guó)6個(gè)不同氣候區(qū)的長(zhǎng)期試驗(yàn)農(nóng)田土壤歷史數(shù)據(jù)分析,結(jié)合模擬殘留氮肥進(jìn)入土壤被再利用過(guò)程的外源~(15)N室內(nèi)培養(yǎng)試驗(yàn),闡明了施用化肥、化肥和有機(jī)肥配施及秸稈還田條件下我國(guó)典型農(nóng)田土壤氮素殘留特征,揭示了土壤不同氮組分的有效性及作物利用率。取得的主要研究結(jié)果和結(jié)論如下:長(zhǎng)期試驗(yàn)歷史數(shù)據(jù)分析結(jié)果表明:長(zhǎng)期試驗(yàn)期間,我國(guó)典型農(nóng)田的年平均氮肥殘留率(Nitrogen residual efficiency,NRE)為16.9%。水田、水旱輪作和旱作三種土地利用方式下的NRE依次為13.2%、23.9%和13.6%。單施化肥處理中,氮鉀化肥(NK)處理的NRE最高為16.2%,其次為氮磷化肥(NP)處理(15.8%)、氮磷鉀化肥(NPK)處理(16.0%)。水旱輪作與旱作下單施氮肥(N)和氮磷鉀配施有機(jī)肥(NPKM)處理的NRE分別為21.7%、19.0%。水田和旱地下的氮磷鉀與秸稈還田(NPKS)處理的NRE平均為10.4%。外源~(15)N室內(nèi)培養(yǎng)試驗(yàn)結(jié)果顯示,化肥氮素固持率在不施肥(CK)處理下最高為22.2%;NPKM處理最低為13.7%;NPK和NPKS處理,分別為16.8%和18.1%。細(xì)自由顆粒有機(jī)氮(ffPON)組分氮素固持率最低,其次是物理保護(hù)有機(jī)氮(iPON)組分;在粗自由顆粒有機(jī)氮(cfPON)組分中,NPK和NPKM處理分別比CK處理低1.80%、1.69%;在微團(tuán)聚體內(nèi)部礦物結(jié)合有機(jī)氮(μ-mSON)組分和微團(tuán)聚體外部礦物結(jié)合有機(jī)氮(d-mSON)組分上,CK較其他處理高1.29%-3.70%、2.18%-3.19%。cfPON組分固持氮素有效率在NPKM處理下最高為19.0%,其次是NPK處理為16.8%,CK處理與NPKS處理相同為13.9%。iPON組分下,CK、NPK、NPKS、NPKM處理的有效率分別為12.1%、10.9%、6.27%、5.66%。μ-mSON組分的有效率最低為2.99%-4.85%,CK處理與其他處理相比低1.37%-1.86%。d-mSON組分的有效率為12.4%-23.1%,其中NPK處理與其他處理相比高9.22%-10.8%。
[Abstract]:The traditional utilization rate of nitrogen fertilizer in China is only about 30%, which is far lower than that of 50-60 in western countries. In fact, the traditional calculation method of nitrogen fertilizer use efficiency only considered the nutrient absorption and utilization of the current crop, but did not reflect the residue and availability of fertilizer nitrogen in the soil. Based on the analysis of the soil historical data of 6 different climatic regions in China, the application of chemical fertilizer was elucidated by combining with the experiment of simulating the residual nitrogen fertilizer entering into the soil to be reused. The characteristics of nitrogen residue in Chinese typical farmland soil under the condition of fertilizer and organic fertilizer combined application and straw return revealed the availability and crop utilization efficiency of different nitrogen components in the soil. The main results and conclusions are as follows: during the long term experiment, the results of historical data analysis show that the average annual nitrogen residue rate (NREs) of typical farmland in China is 16. 9%. The NRE of paddy field, crop rotation and dry cropping were 13.2g% and 13.6%, respectively. In the treatment of single fertilizer application, the highest amount of NRE was 16.2in nitrogen and potassium fertilizer treatment, followed by 15.8m in nitrogen and phosphorus fertilizer treatment, and 16.0 in nitrogen, phosphorus and potassium fertilizer treatment. The NRE of N (N) and NPK (N) and K (N) and N (K) combined with organic fertilizer (NPKM) were 21.790 and 19.0, respectively. The average NRE of N, P and K treatments in paddy field and dry land was 10.4 kum. The results showed that the highest nitrogen fixation rate of fertilizer treatment was 22.2g / kg and the lowest was 13.7g / NPKS (16.8% and 18.1%, respectively). The organic nitrogen sequestration rate of fine free particles was the lowest, followed by the physical-protected organic nitrogen iPON. NPK and NPKM treatments were 1.80- 1.69 lower than CK treatments in coarse free particle organic nitrogen (NPKM) fractions, and CK was 1.29-3.70% higher than that of other treatments in microaggregates (渭 -mSON) and micro-aggregates (渭 -mSON) and organic nitrogen (d-mSON) components outside microaggregates, which were 1.29-3.70g 2.18-3.19.cfPON group. The highest effective rate of nitrogen retention under NPKM treatment was 19.0. The second was that the highest effective rate of nitrogen retention was 16.8in NPK treatment and the same as that in NPKS treatment. The effective rate of 13.9%.iPON treatment was 12.1g 10.9 and 6.276.66.The lowest effective rate of 渭 -mson component was 2.99-4.85ck treatment was lower than that of other treatments. The effective rate of the components was 12.4- 23.1.The NPK treatment was 9.22% -10.8% higher than other treatments.
【學(xué)位授予單位】:貴州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類(lèi)號(hào)】:S143.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 帕·德·卡里尼茨克;封朝璧;胡迪先;;測(cè)定生長(zhǎng)豬對(duì)化合物及飼料中礦物質(zhì)生物學(xué)可利用性的方法[J];貴州畜牧獸醫(yī);1992年04期
2 李靜,陳宏,陳玉成,楊學(xué)春;腐殖酸對(duì)土壤汞、鎘、鉛植物可利用性的影響[J];四川農(nóng)業(yè)大學(xué)學(xué)報(bào);2003年03期
3 陳宏,陳玉成,楊學(xué)春;硫化鈉對(duì)土壤汞、鎘、鉛的植物可利用性的調(diào)控[J];生態(tài)環(huán)境;2003年03期
4 曾躍春;高彥征;凌婉婷;李秋玲;韓進(jìn);;土壤中有機(jī)污染物的形態(tài)及植物可利用性[J];土壤通報(bào);2009年06期
5 陳宏,陳玉成,楊學(xué)春;石灰對(duì)土壤中Hg Cd Pb的植物可利用性的調(diào)控研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2003年05期
6 段吳燕;丁園;舒紅英;廖世玉;袁勇;曾濤;;黃棕壤重金屬植物可利用性表征方法的優(yōu)化[J];安徽農(nóng)業(yè)科學(xué);2009年04期
7 劉玉榮,黨志,尚愛(ài)安;煤矸石風(fēng)化土壤中重金屬的環(huán)境效應(yīng)研究[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2003年01期
8 郭鵬然;賈曉宇;段太成;仇榮亮;陳杭亭;;稀土工業(yè)區(qū)土壤中釷形態(tài)的植物可利用性評(píng)價(jià)[J];生態(tài)環(huán)境學(xué)報(bào);2009年04期
9 ;降低豬的好斗性[J];農(nóng)業(yè)新技術(shù)(今日養(yǎng)豬業(yè));2004年01期
10 ;[J];;年期
相關(guān)會(huì)議論文 前1條
1 周輝;杜文超;王曉蓉;朱建國(guó);郭紅巖;;大氣CO_2濃度升高對(duì)污染土壤銅的植物可利用性及毒性影響[A];中國(guó)化學(xué)會(huì)第26屆學(xué)術(shù)年會(huì)環(huán)境化學(xué)分會(huì)場(chǎng)論文集[C];2008年
相關(guān)重要報(bào)紙文章 前1條
1 山西農(nóng)業(yè)大學(xué)工學(xué)院 馮華;太陽(yáng)能光伏溫室的可利用性[N];中國(guó)花卉報(bào);2014年
相關(guān)碩士學(xué)位論文 前5條
1 梁爽;老化過(guò)程對(duì)土壤砷、鉛的形態(tài)及可利用性的影響研究[D];南京大學(xué);2014年
2 史天昊;不同施肥下典型農(nóng)田氮素殘留特征及可利用性[D];貴州大學(xué);2015年
3 胡丹;河流表層沉積物中多環(huán)芳烴微生物可利用性的表征研究[D];重慶大學(xué);2013年
4 劉平平;基于關(guān)聯(lián)關(guān)系的漏洞評(píng)估技術(shù)研究[D];北京郵電大學(xué);2015年
5 陳宏;土壤汞、鎘、鉛植物可利用性的化學(xué)調(diào)控研究[D];西南農(nóng)業(yè)大學(xué);2002年
,本文編號(hào):1935813
本文鏈接:http://sikaile.net/kejilunwen/nykj/1935813.html