利用細(xì)菌生物氧化作用制備錳基鍵電池電極材料及降解毒死蜱的研究
本文選題:錳氧化礦物 + 表面展示 ; 參考:《華中農(nóng)業(yè)大學(xué)》2017年博士論文
【摘要】:氧化錳礦物是經(jīng)化學(xué)和生物氧化Mn~(2+)后形成的、具有高反應(yīng)活性的一類(lèi)金屬礦物,通常以較高的含量和以球狀、塊狀或不規(guī)則形等形狀的聚集體的形式分布于土壤和水體沉積物中,能強(qiáng)烈地吸附多種重金屬、放射性元素和微量元素等,影響或直接決定著它們?cè)诃h(huán)境中的濃度、形態(tài)、遷移和轉(zhuǎn)化過(guò)程,從而在元素的生物地球物化流動(dòng)循環(huán)中充當(dāng)重要環(huán)節(jié)。大量的研究已證實(shí),多種微生物類(lèi)群,尤其錳氧化細(xì)菌和錳氧化真菌類(lèi)群,是自然界中氧化錳礦物形成的主要驅(qū)動(dòng)力。本文基于實(shí)驗(yàn)室一株錳氧化假單胞菌(Pseudominas sp.)T34菌株和另一株表面展示多銅氧化酶的惡臭假單胞菌(Pseudomonas putida)重組菌MB285均可在Mn~(2+)誘導(dǎo)下形成生物錳氧化礦物聚集體的特性,制備了由Co~(2+)/Ni~(2+)等外源金屬摻雜的多種納米-微米級(jí)生物錳氧化物聚集體并進(jìn)行了多重形貌與性能表征測(cè)定,然后利用聚集體作為生物模板進(jìn)一步制備了MnO基質(zhì)的中空、多孔和高氧化勢(shì)能的電化學(xué)材料并測(cè)定了用于鋰離子電池負(fù)極材料時(shí)的電化學(xué)性能。此外,利用多銅氧化酶對(duì)有機(jī)化合物的降解活性,研究了表面展示多銅氧化酶工程菌MB285菌株對(duì)有機(jī)磷農(nóng)藥毒死蜱的完全降解活性。其主要研究?jī)?nèi)容和結(jié)果如下:1.從實(shí)驗(yàn)室保藏的具有錳氧化活性的野生菌株中篩選到能形成錳氧化物聚集體的假單胞菌T34,另發(fā)現(xiàn)表面展示多銅氧化酶的惡臭假單胞菌MB285在含Mn~(2+)環(huán)境下連續(xù)培養(yǎng)時(shí)也具有類(lèi)似活性。在培養(yǎng)過(guò)程中分別添加Co~(2+)和Ni~(2+),分析了氧化物礦化過(guò)程中這兩種金屬離子對(duì)野生菌株T34菌株和工程菌MB285菌株錳氧化活性的影響,證明了金屬離子在錳氧化礦物形成的過(guò)程中與其存在互作。對(duì)T34和MB285形成的聚集體表觀形貌和主要物相進(jìn)行了多重表征,發(fā)現(xiàn)T34生成的聚集體為層狀堆疊結(jié)構(gòu),MB285生成的聚集體為微球形;兩種聚集體均為介孔材料,具有較高的比表面積,主要成分仍以生物質(zhì)為主;形成的聚集體為高價(jià)態(tài)錳氧化物分散在細(xì)菌和胞外多糖等生物質(zhì)中的微米-納米結(jié)構(gòu)。分析了影響錳氧化活性的多種因素尤其是錳氧化酶在錳氧化活動(dòng)中的重要作用,明確了錳氧化物礦化作用的優(yōu)化條件。2.以T34菌株和工程菌MB285形成的生物錳氧化物聚集體作為前驅(qū)物,利用生物礦化作用和金屬離子沉降槽的特性實(shí)現(xiàn)了溫和條件下Co和Ni元素的摻雜,然后利用生物模板法將聚集體前驅(qū)物在Ar氣環(huán)境中以不同溫度進(jìn)行高溫碳化,制備了由Co和Ni摻雜的多種復(fù)合材料。通過(guò)X射線光電子能譜、相組成和精細(xì)結(jié)構(gòu)分析技術(shù)證實(shí)這些材料為以MnO納米晶體為基相、多相彼此摻雜并共同鑲嵌于碳基質(zhì)的多孔復(fù)合物材料。研究表明,隨碳化溫度的提高,復(fù)合材料的石墨化程度逐漸提高,而適當(dāng)?shù)奶蓟瘻囟瓤墒共牧闲纬芍锌蘸投嗫仔蚊病?duì)各溫度下合成的材料作為鋰離子電池負(fù)極材料的電化學(xué)循環(huán)性能和倍率性能進(jìn)行比較。由于具有獨(dú)特的中空多孔結(jié)構(gòu)和呈多相摻雜的狀態(tài),由T34菌株制備的復(fù)合材料CMC-Co和CMC-Ni在循環(huán)過(guò)程中展現(xiàn)了良好的循環(huán)穩(wěn)定性和可逆比容量,CMC-Co和CMC-Ni保留的可逆放電容量分別為650 m Ah g~(-1)和547.2 m Ah g~(-1)(0.1 Ag~(-1),50個(gè)循環(huán))。由工程菌MB285制備的復(fù)合材料CMB-Co和CMB-Ni的比容量分別為361.44和379.29 m Ah g~(-1)(0.1 Ag~(-1),50個(gè)循環(huán))。所有制備的摻雜Ni氧化物材料的循環(huán)穩(wěn)定性都有大幅度的提高,并且在循環(huán)性能的測(cè)試中具備接近零容量損失的特性(200個(gè)循環(huán)),極化現(xiàn)象消失。3.研究了工程菌MB285對(duì)農(nóng)藥毒死蜱的生物降解能力。通過(guò)高效液相色譜和氣相色譜-質(zhì)譜聯(lián)用技術(shù)對(duì)降解產(chǎn)物的組成進(jìn)行分析的結(jié)果表明,MB285能夠完全降解毒死蜱;而非細(xì)胞表面固定的游離多銅氧化酶僅能將毒死蜱轉(zhuǎn)化為3,5,6-三氯-2-吡啶醇。工程菌MB285降解反應(yīng)過(guò)程中存在兩種中間代謝物,即3,5,6-三氯-2-吡啶醇和磷酸二乙酯,反映該菌對(duì)毒死蜱的完全降解是通過(guò)表面多銅氧化酶和部分細(xì)胞酶類(lèi)的聯(lián)合作用和分多步反應(yīng)來(lái)實(shí)現(xiàn)的。降解反應(yīng)可以在較寬范圍的pH值(2?7)和溫度(5?55℃)下進(jìn)行且不需要Cu2+參與。使用秀麗隱桿線蟲(chóng)(Caenorhabditis elegans)作為指示生物的生物測(cè)定實(shí)驗(yàn)表明含毒死蜱培養(yǎng)物通過(guò)工程菌MB285降解后發(fā)生了完全脫毒作用。此外,該工程菌展示了可重復(fù)利用的高降解活性和進(jìn)行連續(xù)降解反應(yīng)的良好循環(huán)性能,以及在自然廢水體系中對(duì)毒死蜱的強(qiáng)降解能力。因此,顯示了在生物修復(fù)毒死蜱殘留物污染方面的應(yīng)用潛力。
[Abstract]:A mineral of manganese oxide, formed after chemical and biological oxidation of Mn~ (2+), has a highly reactive class of metal minerals, usually distributed in soil and water sediments in the form of higher content and aggregates of spherical, lumpy, or irregular shapes, and can strongly adsorb a variety of heavy metals, radioactive elements and trace elements, etc. It affects or directly determines their concentration, morphology, migration and transformation in the environment, and thus acts as an important link in the biological and physical flow cycle of the elements. A large number of studies have proved that a variety of microbial groups, especially manganese oxide bacteria and manganese oxide fungi, are the main driving forces of the formation of manganese oxide minerals in nature. Based on a laboratory strain of Pseudominas sp. (Pseudominas sp.) and another strain of Pseudomonas sp. (Pseudomonas putida), a recombinant strain of Pseudomonas aeruginosa (Pseudomonas putida) can be induced by Mn~ (2+) to form a biological manganese oxide aggregate, and a variety of exogenous metals, such as Co~ (2+) /Ni~ (2+) and so on, are prepared. The multimorphologies and properties of manganese oxide aggregates in rice micron grade were measured. Then the electrochemical properties of the MnO matrix were further prepared by using the aggregates as a template for the hollow, porous and high oxidation potential, and the electrochemical properties of the anode materials used in lithium ion batteries were measured. The degradation activity of organic compounds was studied. The total degradation activity of MB285 strain on the organophosphorus pesticide chlorpyrifos on the surface was studied. The main contents and results were as follows: 1. the Pseudomonas T34, which could form manganese oxide aggregates, was screened from the wild strains with manganese oxide activity preserved in the laboratory. It was found that the Pseudomonas malodum MB285 on the surface showed a similar activity in Mn~ (2+) environment. Co~ (2+) and Ni~ (2+) were added to the culture process, and the effects of these two metal ions on the manganese oxidation activity of the wild strain T34 strain and the MB285 strain of the engineering bacteria were analyzed in the process of oxide mineralization. The metal ions interacted with them during the formation of manganese oxide minerals. The aggregated surface morphology and main phase of T34 and MB285 were characterized. It was found that the aggregates formed by T34 were layered structure, and the aggregates formed by MB285 were microspheres, and the two aggregates were mesoporous materials with high specific surface area. The main components are mainly biomass, and the formed aggregates are micron and nanoscale structures of high valence manganese oxides dispersed in bacteria and extracellular polysaccharide and other biomass. The important effects of manganese oxidases on manganese oxidation activities are analyzed, and the optimal conditions for manganese oxide mineralization are confirmed by.2.. The biological manganese oxide aggregates formed by T34 strain and engineering bacteria MB285 are used as precursors. The doping of Co and Ni elements in mild conditions is realized by the properties of biomineralization and the characteristics of metal ion sink. Then, the polymer precursor in the Ar gas environment is carbonized at different temperatures by the biological template method, and Co is prepared by Co. And Ni doped composite materials. Through X ray photoelectron spectroscopy, phase composition and fine structure analysis, it is proved that these materials are porous composite materials which are doped with MnO nanocrystals and are multiphase and embedded in carbon matrix. The study shows that the degree of graphitization of the composites increases with the increase of carbonation temperature. The suitable carbonization temperature can make the material hollow and porous morphology. The materials synthesized at various temperatures are compared to the electrochemical cycle properties and ratio properties of the anode materials for lithium ion batteries. Because of the unique hollow porous structure and the state of multiphase doping, the composite material CMC-Co and CMC-Ni prepared by the T34 strain can be used. The cyclic stability and reversible specific capacity were shown in the cycle. The reversible discharge capacity retained by CMC-Co and CMC-Ni were 650 m Ah g~ (-1) and 547.2 m Ah g~ (-1) (-1), 50 cycles, respectively. The composite materials prepared by engineering bacteria were 361.44 and 379.29 respectively (0.1) and 50 respectively. Cycle). The cyclic stability of all the doped Ni oxide materials has been greatly improved, and there is a characteristic of close to zero loss in the cycle performance test (200 cycles). The polarization phenomenon disappears.3. to study the biodegradability of the engineering bacteria MB285 to the pesticide chlorpyrifos by high performance liquid chromatography and gas chromatography - The analysis of the composition of the degradation products by mass spectrometry shows that MB285 can completely reduce the detoxification of chlorpyrifos, and the non cell surface immobilized free polycupric oxidase can only convert chlorpyrifos to 3,5,6- three chloro -2- pyridine. There are two intermediate metabolites, namely, 3,5,6- three chloro -2- pyridine alcohol and phosphorus in the MB285 degradation process of engineering bacteria. Acid two ethyl ester, reflecting the complete degradation of chlorpyrifos by the bacteria by the combination of surface copper oxidase and partial cell enzymes and multistep reactions. The degradation reaction can be carried out at a wider range of pH values (2? 7) and temperature (5? 55 degrees) without the need of Cu2+ reference. The use of Caenorhabditis elegans as a cryptonematode. Biometric tests indicating that the bioassay of chlorpyrifos showed complete detoxification after the degradation of the engineered strain MB285. In addition, the engineered bacteria showed good reproducibility and good cycling performance for continuous degradation, as well as the strong degradation ability of Chlorpyrifos in the natural waste water system. The potential application of bioremediation of chlorpyrifos residues is shown.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:X592;TM912
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 梁金松;柏耀輝;胡承志;William Jefferson;曲久輝;;錳生物氧化的研究進(jìn)展及在水處理中的應(yīng)用[J];應(yīng)用與環(huán)境生物學(xué)報(bào);2013年01期
2 明博;韓虹羽;;鋰離子電池正極材料進(jìn)展[J];化工生產(chǎn)與技術(shù);2012年04期
3 武明昊;陳劍;王崇;衣寶廉;;鋰離子電池負(fù)極材料的研究進(jìn)展[J];電池;2011年04期
4 張震;李林;劉凡;;細(xì)菌氧化錳的分子機(jī)制[J];微生物學(xué)報(bào);2011年02期
5 周世萍;段昌群;余澤芬;賴(lài)巧玲;劉宏程;;毒死蜱對(duì)土壤酶活性的影響[J];土壤通報(bào);2008年06期
6 李界秋;黎曉峰;沈方科;張超蘭;;毒死蜱在土壤中的環(huán)境行為研究[J];中國(guó)農(nóng)學(xué)通報(bào);2007年01期
7 蘇茜,張勇;二氧化鈦光催化降解有機(jī)磷農(nóng)藥的機(jī)理和影響因素[J];廣州化學(xué);2005年01期
8 劉國(guó)光,徐海娟,王莉霞,鄭立慶;毒死蜱對(duì)淡水原生動(dòng)物群落的急性毒性[J];農(nóng)業(yè)環(huán)境科學(xué)學(xué)報(bào);2004年04期
9 方劍鋒,曾鑫年,熊忠華,于飛,杜利香;過(guò)氧化氫降解有機(jī)磷農(nóng)藥的研究 I.降解性能及影響因素[J];華南農(nóng)業(yè)大學(xué)學(xué)報(bào);2004年01期
10 周永秋,岳林海,吳墨;太陽(yáng)光下降解久效磷的催化劑研究[J];環(huán)境污染與防治;1999年02期
,本文編號(hào):1873891
本文鏈接:http://sikaile.net/kejilunwen/nykj/1873891.html