模擬徑流條件下坡長(zhǎng)對(duì)工程堆積體坡面土壤侵蝕的影響
本文選題:工程堆積體 + 細(xì)溝形態(tài) ; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文
【摘要】:生產(chǎn)建設(shè)項(xiàng)目挖填不平衡產(chǎn)生的工程堆積體已成為近20年來(lái)新增人為水土流失的主要泥沙策源地。根據(jù)“因害設(shè)防,生態(tài)優(yōu)先”的原則,在工程堆積體坡面布設(shè)合理的防治措施以提高坡面的水土保持功能,進(jìn)而改善生態(tài)環(huán)境,為對(duì)黃土區(qū)工程堆積體坡面防治措施進(jìn)行最優(yōu)化配置,使坡面防護(hù)措施發(fā)揮最大效益。本文以坡長(zhǎng)為研究對(duì)象,就坡長(zhǎng)對(duì)工程堆積體坡面土壤侵蝕的影響進(jìn)行研究,在野外對(duì)模擬工程堆積體徑流小區(qū)進(jìn)行徑流沖刷試驗(yàn),設(shè)置5個(gè)坡長(zhǎng)、3個(gè)坡度來(lái)探討坡長(zhǎng)對(duì)工程堆積體坡面土壤侵蝕的影響。得出主要結(jié)論如下:(1)工程堆積體坡面產(chǎn)流率隨放水時(shí)間持續(xù)呈現(xiàn)波動(dòng)性增大,隨著坡長(zhǎng)增大,產(chǎn)沙率波動(dòng)振幅也變大。徑流含沙量隨著放水時(shí)間的持續(xù)呈現(xiàn)先減小而后保持穩(wěn)定變化,隨著坡長(zhǎng)增大,含沙量呈遞增變化。工程堆積體坡面累積產(chǎn)流量隨放水時(shí)間的變化可以用線性函數(shù)表達(dá),累積產(chǎn)沙量與放水時(shí)間呈極顯著冪函數(shù)關(guān)系,累積產(chǎn)沙量和累積產(chǎn)流量均隨著坡長(zhǎng)的增大呈現(xiàn)遞增變化。試驗(yàn)坡度、坡長(zhǎng)均對(duì)坡面累積產(chǎn)流產(chǎn)沙量具有重要的影響,坡長(zhǎng)對(duì)坡面累積產(chǎn)流產(chǎn)沙的影響大于坡度,坡長(zhǎng)對(duì)累積產(chǎn)流產(chǎn)沙量產(chǎn)生正效應(yīng),坡度對(duì)累積產(chǎn)流產(chǎn)沙量產(chǎn)生負(fù)效應(yīng)。(2)細(xì)溝溝寬和溝深均隨放水時(shí)間的持續(xù)呈現(xiàn)增大變化,溝寬隨放水時(shí)間的變化可以很好地用對(duì)數(shù)函數(shù)進(jìn)行描述,溝寬隨坡長(zhǎng)的增大呈現(xiàn)遞增變化,溝深隨放水時(shí)間的變化可用線性函數(shù)很好地描述。細(xì)溝寬深比均隨著放水時(shí)間的持續(xù)呈現(xiàn)先減小后逐漸穩(wěn)定的變化,細(xì)溝斷面積隨沖刷歷時(shí)的持續(xù)呈現(xiàn)不斷增大的趨勢(shì),斷面積隨放水時(shí)間的變化可以很好地用線性方程進(jìn)行描述。不同坡度、坡長(zhǎng)條件下,溝寬的沿程分布情況并不一致,呈現(xiàn)多樣性;在小坡長(zhǎng)情況下,溝深的波動(dòng)性較大,整體上來(lái)看,溝深均隨著坡面沿程向下呈現(xiàn)逐漸遞減并趨于穩(wěn)定的分布規(guī)律。(3)流速隨著放水時(shí)間的持續(xù)呈現(xiàn)先減小后逐漸趨于穩(wěn)定,坡面水流流速與時(shí)間之間的關(guān)系可以很好地用對(duì)數(shù)函數(shù)進(jìn)行描述。雷諾數(shù)隨著時(shí)間的持續(xù)呈先增大后減小的趨勢(shì),隨著坡長(zhǎng)增加而減小,雷諾數(shù)隨放水時(shí)間的變化可以很好地用二次函數(shù)關(guān)系進(jìn)行描述,二次函數(shù)開口向下,表明雷諾數(shù)在試驗(yàn)過程中存在最大值。佛汝德數(shù)隨著放水時(shí)間的持續(xù)呈現(xiàn)先驟降后趨于穩(wěn)定的變化,這表明坡面徑流流態(tài)在不斷地向緩流發(fā)展。坡面阻力系數(shù)隨著時(shí)間的增大呈現(xiàn)不斷增大的趨勢(shì),阻力系數(shù)總體介于0.017~12.14,隨著坡長(zhǎng)增大而增大,佛汝德數(shù)、阻力系數(shù)與時(shí)間的關(guān)系均可以很好地用冪函數(shù)進(jìn)行描述。(4)土壤剝蝕率與水流剪切力和水流功率均存在顯著的線性函數(shù),對(duì)應(yīng)的土壤可蝕性參數(shù)為3.5×10-3s/m,臨界水流剪切力為5.57Pa,剝蝕率與水流剪切力的擬合效果最好。(5)含沙量與坡長(zhǎng)存在良好的對(duì)數(shù)函數(shù)關(guān)系,累積產(chǎn)流量與坡長(zhǎng)的關(guān)系可以很好地用冪函數(shù)進(jìn)行描述,累積產(chǎn)沙量與坡長(zhǎng)存在二次函數(shù)關(guān)系。細(xì)溝形態(tài)指標(biāo)溝深與坡長(zhǎng)并不存在顯著的函數(shù)關(guān)系,細(xì)溝溝寬與坡長(zhǎng)存在顯著的二次函數(shù)關(guān)系。流速與坡長(zhǎng)存在顯著的線性函數(shù)關(guān)系,佛汝德數(shù)、阻力系數(shù)、粗糙系數(shù)、水流挾沙力與坡長(zhǎng)均存在顯著的指數(shù)函數(shù)關(guān)系。
[Abstract]:In the past 20 years, the accumulation of Engineering accumulation has become the main sediment source of artificial soil erosion in the construction projects. According to the principle of "fortification and ecological priority", reasonable prevention and control measures are set up on the slope surface of the project in order to improve the soil and water conservation function of the slope and to improve the ecological environment. In this paper, the slope length is the research object, the influence of slope length on the soil erosion of the slope surface of the engineering accumulation body is studied in this paper. The runoff scour test of the runoff plot in the simulated engineering accumulation body is carried out in the field, and 5 slope lengths and 3 slopes are set up in the field. The main conclusions are as follows: (1) the flow rate of the slope surface of the engineering accumulating body increases with the water release time, and the fluctuation amplitude of sediment yield increases with the increase of the slope length. The cumulative yield of the slope on the slope of the engineering accumulation can be expressed with linear function with the change of the time of water release. The cumulative sediment yield and the discharge time have a very significant power function relationship. The cumulative sediment yield and the cumulative yield are all increasing with the increase of the slope length. The slope and the length of the slope are all accumulated on the slope surface. The effect of the sediment yield on the sediment yield is more important than that of the slope. The slope length has a positive effect on the cumulative yield and sediment yield, and the slope has a negative effect on the cumulative runoff and sediment. (2) the width of the trench groove and the depth of the ditch vary with the duration of the water release, and the width of the ditch can be used well with the change of the water release time. The logarithmic function is described with the increase of the width of the ditch with the increase of the length of the slope. The depth of the ditch is well described with the linear function. The width to depth ratio of the rill is gradually reduced with the continuous presentation of the water release time. The variation of water time can be well described by linear equation. Under the condition of different slope and length, the distribution of groove width is different and presents diversity. In the case of small slope length, the depth of the ditch has a large fluctuation. On the whole, the depth of the ditch shows a gradual decreasing and stable distribution along the slope along the slope. (3) flow The relation between the flow velocity and the time can be described well with the logarithmic function. The number of Reynolds number increases first and then decreases with the time, which decreases with the increase of the slope length, and the Reynolds number can be used two times with the change of the water release time. The function relation is described, and the two function opening downward indicates that the Reynolds number has the maximum value during the experiment. The resistance coefficient is generally in 0.017~12.14, with the increase of the slope length. The relationship between the Froude number, the resistance coefficient and the time can be well described with power function. (4) there is a significant linear function between the soil erosion rate and the flow shear force and the flow power, and the corresponding soil erodibility parameters are 3.5 * 10-3s/m, and the critical flow shear is cut. Force of 5.57Pa, the best fitting effect of the erosion rate and the flow shear force is best. (5) there is a good logarithmic function relationship between the sediment content and the slope length. The relationship between the cumulative yield and the slope length can be well described with the power function, and the cumulative sediment yield and the slope length have two functional relationships. The trench shape index does not have a significant function in the depth of the ditch and the slope length. There is a significant two function relationship between the width of the rill ditch and the length of the slope. There is a significant linear function relationship between the velocity and the slope length, and there is a significant exponential function relationship between the Froude number, the drag coefficient, the roughness coefficient, the sediment carrying capacity and the slope length.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S157.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 秦偉;朱清科;張巖;;通用土壤流失方程中的坡長(zhǎng)因子研究進(jìn)展[J];中國(guó)水土保持科學(xué);2010年02期
2 王程;陳正江;楊勤科;曹佳云;丑述仁;;流域分布式坡長(zhǎng)不確定性的初步分析[J];水土保持研究;2012年02期
3 張宏鳴;楊勤科;李銳;劉晴蕊;;流域分布式侵蝕學(xué)坡長(zhǎng)的估算方法研究[J];水利學(xué)報(bào);2012年04期
4 羅輝;巫儒俊;;林區(qū)公路限制坡長(zhǎng)的確定[J];林業(yè)科技;1991年03期
5 C.K.Mutchler ,J·D·Greer ,車桂萍;坡長(zhǎng)對(duì)緩坡侵蝕的影響[J];水土保持科技情報(bào);1982年04期
6 張信寶,文安邦,奎因TA,沃林DE;黃土峁坡農(nóng)地侵蝕與坡長(zhǎng)的關(guān)系[J];中國(guó)水土保持;1998年01期
7 R.Lal ,姚云峰;坡長(zhǎng)與坡度對(duì)水土流失的影響[J];水土保持科技情報(bào);1991年04期
8 付興濤;張麗萍;葉碎高;王小云;吳希媛;張迅;;經(jīng)濟(jì)林地坡長(zhǎng)對(duì)侵蝕產(chǎn)流動(dòng)態(tài)過程影響的模擬試驗(yàn)研究[J];水土保持學(xué)報(bào);2009年05期
9 劉和平;王秀穎;劉寶元;;短坡條件下侵蝕產(chǎn)沙與坡長(zhǎng)的關(guān)系[J];水土保持學(xué)報(bào);2011年02期
10 孔亞平;張科利;曹龍熹;;土壤侵蝕研究中的坡長(zhǎng)因子評(píng)價(jià)問題[J];水土保持研究;2008年04期
相關(guān)會(huì)議論文 前1條
1 路賓朋;陳興偉;;基于坡長(zhǎng)修正的晉江西溪流域產(chǎn)流產(chǎn)沙模擬[A];農(nóng)業(yè)、生態(tài)水安全及寒區(qū)水科學(xué)——第八屆中國(guó)水論壇摘要集[C];2010年
相關(guān)博士學(xué)位論文 前3條
1 張宏鳴;流域分布式土壤侵蝕學(xué)坡長(zhǎng)提取與分析[D];西北農(nóng)林科技大學(xué);2012年
2 郭偉玲;坡度和坡長(zhǎng)尺度效應(yīng)與尺度變換研究[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2012年
3 付興濤;坡面徑流侵蝕產(chǎn)沙及動(dòng)力學(xué)過程的坡長(zhǎng)效應(yīng)研究[D];浙江大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 郭曉朦;不同坡長(zhǎng)擾動(dòng)地表下紫色土坡面土壤理化性質(zhì)的時(shí)空分布特征[D];西南大學(xué);2016年
2 蘭敏;坡長(zhǎng)提取數(shù)據(jù)單元研究[D];西北農(nóng)林科技大學(xué);2012年
3 程崢;流域分布式侵蝕學(xué)坡長(zhǎng)提取的影響因素研究[D];西北大學(xué);2013年
4 賀小容;不同坡長(zhǎng)條件下擾動(dòng)地表對(duì)土壤養(yǎng)分流失的影響研究[D];西南大學(xué);2014年
5 鄧?yán)麖?qiáng);黃土區(qū)工程堆積體水蝕特征及測(cè)算模型坡長(zhǎng)因子試驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2014年
6 李俊;基于GIS的小流域坡度坡長(zhǎng)因子計(jì)算方法研究[D];西北農(nóng)林科技大學(xué);2011年
7 李俊;基于DEM的黃土高原坡長(zhǎng)的自動(dòng)提取和分析[D];西北大學(xué);2007年
8 姚云;不同坡長(zhǎng)條件下擾動(dòng)地表對(duì)紫色土坡面土壤可蝕性的影響[D];西南大學(xué);2014年
9 劉和平;坡長(zhǎng)對(duì)土壤可蝕性K值測(cè)定的影響[D];北京師范大學(xué);2008年
,本文編號(hào):1861939
本文鏈接:http://sikaile.net/kejilunwen/nykj/1861939.html