天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于地物光譜儀與成像光譜儀耦合的玉米生長信息監(jiān)測(cè)研究

發(fā)布時(shí)間:2018-05-08 04:30

  本文選題:玉米 + SVC光譜 ; 參考:《西北農(nóng)林科技大學(xué)》2017年碩士論文


【摘要】:玉米是我國主要糧食作物,其產(chǎn)量和品質(zhì)直接影響我國糧食安全和農(nóng)業(yè)生產(chǎn)的發(fā)展。葉綠素含量、植株含水量、葉片氮素含量等生理參數(shù)對(duì)玉米長勢(shì)和產(chǎn)量評(píng)估有重要作用,可以為農(nóng)田管理、灌溉、施肥提供參考依據(jù)。以西北地區(qū)玉米為對(duì)象,應(yīng)用地物光譜輻射儀和成像光譜儀觀測(cè)光譜數(shù)據(jù),測(cè)定各生育期玉米的葉綠素相對(duì)含量(Soil and plant analyzer development,SPAD)值、植株含水量以及葉片氮素含量,分析了不同生育期不同光譜儀下的光譜響應(yīng)特征以及與SPAD值、植株含水量、葉片氮素含量的相關(guān)性,建立了基于特征波段、植被指數(shù)和高光譜特征參數(shù)的玉米生理參數(shù)高光譜估算模型,研究結(jié)果可以為西北地區(qū)玉米生長狀況遙感監(jiān)測(cè)和定量反演提供理論依據(jù)和技術(shù)支持。得到主要結(jié)論如下:(1)不同生育期玉米冠層光譜反射率響應(yīng)特征有所不同。隨著玉米生長發(fā)育,“綠峰”波段光譜反射率逐漸增大;在近紅外波段,抽雄期和乳熟期光譜反射率較大,拔節(jié)期和完熟期光譜反射率較小。從拔節(jié)期到乳熟期,葉片SPAD值不斷增加,乳熟期到完熟期,葉片SPAD值下降;在整個(gè)生育期,植株含水量呈現(xiàn)出逐漸減小的趨勢(shì)。(2)地物光譜輻射儀測(cè)得的冠層光譜(SVC光譜Spectra Vista Corporation)與玉米SPAD值的相關(guān)性,拔節(jié)期、抽雄期、乳熟期和完熟期,光譜反射率與SPAD值的相關(guān)性分別在709nm、552nm、712nm和710nm處達(dá)到最大;光譜反射率一階微分與SPAD值的相關(guān)性分別在752nm、756nm、760nm和749nm達(dá)到最大;玉米各生育期,植被指數(shù)GRVI、GNDVI、MCARI、TCARI與SPAD值均極顯著相關(guān);高光譜特征參數(shù)λr、Db、SDb、SDg、SDr/SDb、SDr/SDy、(SDr-SDb)/(SDr+SDb)和(SDr-SDy)/(SDr+SDy)與SPAD值達(dá)到相關(guān)系數(shù)絕對(duì)值0.7以上的極顯著相關(guān),通用性較好。抽雄期光譜一階微分的冪函數(shù)模型,高光譜特征參數(shù)的多元線性回歸模型建模為最優(yōu)估算模型。(3)SVC光譜反射率與玉米植株含水量的相關(guān)性在各個(gè)生育期均較小,光譜一階微分與植株含水量在各個(gè)生育期的最大相關(guān)波段分別為1685nm、2090nm、2455nm和433nm,最大相關(guān)系數(shù)分別為0.542、0.570、0.510和-0.685;FD2246/2084、FD2234/2028、FD2337/2249和FD(2341-433)/(2341+433)分別為各生育期的最佳光譜指數(shù),與植株含水量的相關(guān)系數(shù)分別為0.716、0.668、0.726和-0.888。完熟期FD(2341-433)/(2341+433)的指數(shù)模型,高光譜特征參數(shù)的多元線性回歸模型為最優(yōu)估算模型。(4)成像光譜儀(SOC光譜Surface Optics Corporation)測(cè)得的玉米原始光譜反射率及其光譜一階微分分別與SPAD值在717.17nm和696.12nm處達(dá)到最大相關(guān),相關(guān)系數(shù)分別為-0.567和-0.841;植被指數(shù)MCARI與SPAD值呈最大負(fù)相關(guān),相關(guān)系數(shù)-0.830;高光譜特征參數(shù)Dy、SDg和(SDr-SDb)/(SDr+SDb)與SPAD值相關(guān)性較好,相關(guān)系數(shù)分別為0.799、-0.795和0.862。(SDr-SDb)/(SDr+SDb)的一元線性模型、光譜一階微分的多元線性模型為最優(yōu)估算模型。(5)SOC測(cè)得的原始反射率光譜和一階微分光譜分別與葉片氮素在711.90nm和545.84nm處達(dá)最大相關(guān),相關(guān)系數(shù)分別為-0.530和-0.667;植被指數(shù)GNDVI與葉片氮素呈最大正相關(guān),相關(guān)系數(shù)0.608;高光譜特征參數(shù)Ro、SDg和SDr/SDb與葉片氮素相關(guān)性較好,相關(guān)系數(shù)分別為-0.578、-0.635和0.717。SDr/SDb的一元線性模型、高光譜特征參數(shù)的多元線性模型為最優(yōu)估算模型。
[Abstract]:Corn is the main grain crop in China, its yield and quality directly affect the development of grain safety and agricultural production in China. Chlorophyll content, plant water content, leaf nitrogen content and other physiological parameters play an important role in the evaluation of maize growth and yield, which can provide reference for farmland management, irrigation and fertilization. Using spectral radiometer and imaging spectrometer, the relative content of chlorophyll (Soil and plant analyzer development, SPAD), plant water content and leaf nitrogen content were measured by using the spectral radiometer and imaging spectrometer. The spectral response characteristics of different growth periods and the value of SPAD and plant water content were analyzed. The correlation of nitrogen content in leaves was related to the establishment of a Hyperspectral Estimation Model of maize physiological parameters based on characteristic band, vegetation index and hyperspectral characteristic parameters. The results could provide theoretical basis and technical support for remote sensing monitoring and quantitative inversion of maize growth in Northwest China. The main conclusions are as follows: (1) different growth period corn. The spectral reflectance characteristics of canopy spectral reflectance are different. With the growth and development of maize, the spectral reflectance of the "green peak" band increases gradually. In the near infrared band, the spectral reflectance of the male and the milk ripening periods is larger, and the spectral reflectance of the jointing and finishing stages is small. From the jointing stage to the milk ripening stage, the SPAD value of the leaves is increasing, the milk ripening period and the mature period, leaves are the leaves. The SPAD value decreased; in the whole growth period, the water content of the plant decreased gradually. (2) the correlation between the canopy spectrum (SVC spectrum Spectra Vista Corporation) and the value of maize SPAD measured by the ground spectral radiometer, the jointing stage, the male stage, the milk ripening period and the completion period, the correlation of spectral reflectance with the SPAD value was 709nm, 552nm, 712nm respectively. The correlation between the first order differential of spectral reflectance and the value of SPAD reached the maximum in 752nm, 756nm, 760nm and 749nm, respectively, and the vegetation index GRVI, GNDVI, MCARI, TCARI and SPAD were significantly correlated with each growth period of maize; The PAD value reached the extremely significant correlation of the absolute value above 0.7 of the correlation coefficient, and the generality was better. The optimal estimation model was modeled by the power function model of the first order differential of the spectrum and the multivariate linear regression model of hyperspectral characteristic parameters. (3) the correlation between the reflectance of SVC and the water content of maize plants was smaller in each growth period, and the first order of the spectrum The maximum correlation bands of the water content in each growth period were 1685nm, 2090nm, 2455nm and 433nm respectively. The maximum correlation coefficients were 0.542,0.570,0.510 and -0.685, respectively, FD2246/2084, FD2234/2028, FD2337/2249 and FD (2341-433) / (2341+433) were the best spectral indices of each growth period, and the correlation coefficient with the plant water content was 0, respectively. The exponential model of FD (2341-433) / (2341+433) of.716,0.668,0.726 and -0.888., the optimal estimation model of the multivariate linear regression model of hyperspectral characteristic parameters. (4) the original spectral reflectance and the first order differential of the spectral reflectance of the imaging spectrometer (SOC spectrum Surface Optics Corporation) and the SPAD values are in 717.17nm and 696.12nm, respectively. The maximum correlation coefficient is -0.567 and -0.841, the vegetation index MCARI and SPAD have the maximum negative correlation, the correlation coefficient is -0.830, the hyperspectral characteristic parameter Dy, SDg and (SDr-SDb) / (SDr+SDb) and SPAD values are better, the correlation coefficients are 0.799, -0.795 and 0.862.. The multivariate linear model is the optimal estimation model. (5) the maximum correlation between the original reflectance spectra and the first order differential spectra measured by SOC and the leaf nitrogen at 711.90nm and 545.84nm respectively, the correlation coefficients are -0.530 and -0.667, respectively, the vegetation index GNDVI has the maximum positive correlation with the leaf nitrogen, the correlation coefficient is 0.608, the hyperspectral characteristic parameter Ro, SDg The correlation coefficient of SDr/SDb and leaf nitrogen is better. The correlation coefficient is -0.578, -0.635 and 0.717.SDr/SDb linear model, and the multivariate linear model of hyperspectral characteristic parameters is the optimal estimation model.

【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S513;S126

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王麗鳳;張長利;趙越;宋玉柱;王潤濤;蘇中濱;王樹文;;高光譜成像技術(shù)的玉米葉片氮含量檢測(cè)模型[J];農(nóng)機(jī)化研究;2017年11期

2 張儀;;我國精準(zhǔn)農(nóng)業(yè)發(fā)展現(xiàn)狀[J];現(xiàn)代農(nóng)業(yè)科技;2017年07期

3 秦占飛;常慶瑞;謝寶妮;申健;;基于無人機(jī)高光譜影像的引黃灌區(qū)水稻葉片全氮含量估測(cè)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年23期

4 田明璐;班松濤;常慶瑞;由明明;羅丹;王力;王爍;;基于低空無人機(jī)成像光譜儀影像估算棉花葉面積指數(shù)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年21期

5 童慶禧;張兵;張立福;;中國高光譜遙感的前沿進(jìn)展[J];遙感學(xué)報(bào);2016年05期

6 田明璐;班松濤;常慶瑞;馬文君;殷紫;王力;;基于無人機(jī)成像光譜儀數(shù)據(jù)的棉花葉綠素含量反演[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2016年11期

7 李媛媛;常慶瑞;劉秀英;嚴(yán)林;羅丹;王爍;;基于高光譜和BP神經(jīng)網(wǎng)絡(luò)的玉米葉片SPAD值遙感估算[J];農(nóng)業(yè)工程學(xué)報(bào);2016年16期

8 陸國政;李長春;楊貴軍;于海洋;趙曉慶;張曉燕;;基于成像高光譜儀的大豆葉面積指數(shù)反演研究[J];大豆科學(xué);2016年04期

9 王樹文;趙珊;張長利;蘇中濱;王麗鳳;趙越;;基于成像光譜技術(shù)的寒地玉米苗期冠層氮含量預(yù)測(cè)模型[J];農(nóng)業(yè)工程學(xué)報(bào);2016年13期

10 賀婷;李建東;劉桂鵬;王國驕;李丹;;基于高光譜遙感的玉米全氮含量估測(cè)模型[J];沈陽農(nóng)業(yè)大學(xué)學(xué)報(bào);2016年03期

相關(guān)博士學(xué)位論文 前3條

1 劉秀英;玉米生理參數(shù)及農(nóng)田土壤信息高光譜監(jiān)測(cè)模型研究[D];西北農(nóng)林科技大學(xué);2016年

2 秦占飛;西北地區(qū)水稻長勢(shì)遙感監(jiān)測(cè)研究[D];西北農(nóng)林科技大學(xué);2016年

3 姚付啟;冬小麥高光譜特征及其生理生態(tài)參數(shù)估算模型研究[D];西北農(nóng)林科技大學(xué);2012年

相關(guān)碩士學(xué)位論文 前2條

1 范梅鳳;冬小麥高光譜特征及葉片和土壤水反演模型[D];西北農(nóng)林科技大學(xué);2015年

2 賈雯晴;基于高光譜的小麥水分狀況監(jiān)測(cè)研究[D];南京農(nóng)業(yè)大學(xué);2013年



本文編號(hào):1859976

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/nykj/1859976.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶b6261***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
婷婷基地五月激情五月| 伊人国产精选免费观看在线视频| 91人妻人人澡人人人人精品| 亚洲欧美日本国产不卡| 最近最新中文字幕免费| 人妻人妻人人妻人人澡| 国产日韩中文视频一区| 深夜视频在线观看免费你懂| 激情五月天深爱丁香婷婷| 国产小青蛙全集免费看| 中字幕一区二区三区久久蜜桃| 91欧美视频在线观看免费| 亚洲性日韩精品一区二区| 国产成人精品视频一二区| 国产精品亚洲二区三区| 好吊日在线观看免费视频| 国产亚洲欧美一区二区| 日韩中文高清在线专区| 日韩精品一区二区三区含羞含羞草| 日韩欧美中文字幕av| 偷拍洗澡一区二区三区| 99久只有精品免费视频播放| 国产又色又粗又黄又爽| 亚洲一区二区三区四区性色av| 欧美人禽色视频免费看| 99久久免费看国产精品| 熟女乱一区二区三区丝袜| 久久少妇诱惑免费视频| av在线免费观看一区二区三区| 国产精品亚洲欧美一区麻豆 | 午夜福利精品视频视频| 99久久人妻中文字幕| 欧美熟妇一区二区在线| 中文字幕乱码一区二区三区四区 | 欧美亚洲三级视频在线观看| 日本一区二区三区黄色| 精品亚洲av一区二区三区| 一二区中文字幕在线观看| 国产又粗又硬又长又爽的剧情| 久久精品国产在热久久| 久久婷婷综合色拍亚洲|