基于極化SAR的小麥倒伏災(zāi)害與長勢(shì)監(jiān)測(cè)研究
本文選題:簡縮極化SAR 切入點(diǎn):作物倒伏 出處:《西安科技大學(xué)》2017年碩士論文
【摘要】:農(nóng)業(yè)作為國民經(jīng)濟(jì)的基礎(chǔ),直接影響我國乃至全球經(jīng)濟(jì)的穩(wěn)健發(fā)展。為順應(yīng)時(shí)代發(fā)展的需求,國家進(jìn)一步加大了在農(nóng)業(yè)方面的投資與扶持力度,精準(zhǔn)農(nóng)業(yè)監(jiān)測(cè)能夠有效保障我國糧食安全,使我國農(nóng)業(yè)由傳統(tǒng)方式向信息化、精準(zhǔn)化與現(xiàn)代化發(fā)展。遙感技術(shù)的發(fā)展為大范圍作物長勢(shì)監(jiān)測(cè)提供了一種手段,傳統(tǒng)的光學(xué)遙感在監(jiān)測(cè)過程中易受到觀測(cè)時(shí)客觀條件影響,導(dǎo)致數(shù)據(jù)實(shí)效性較差。合成孔徑雷達(dá)(Synthetic Aperture Radar,SAR)遙感技術(shù)能夠?qū)崿F(xiàn)全天候?qū)Φ赜^測(cè),且具有一定的穿透性,不受天氣條件制約,同時(shí)對(duì)作物結(jié)構(gòu)特征和水分十分敏感,在農(nóng)業(yè)監(jiān)測(cè)中具有獨(dú)特優(yōu)勢(shì)。目前,雷達(dá)遙感在農(nóng)業(yè)領(lǐng)域中應(yīng)用比較廣泛,因此對(duì)簡縮極化SAR(Compact Polarimetric SAR)的農(nóng)業(yè)應(yīng)用研究需要做進(jìn)一步的探討。本文基于簡縮極化SAR與全極化SAR數(shù)據(jù)完成了小麥倒伏的定性監(jiān)測(cè)研究,并基于水云模型完成了小麥生物量的定量反演研究。本文以小麥為研究對(duì)象,以內(nèi)蒙古自治區(qū)額爾古納市上庫力農(nóng)場(chǎng)為研究區(qū)域,完成以下工作:(1)同步獲取研究區(qū)域2013年5景Radarsat-2雷達(dá)數(shù)據(jù)和地面實(shí)測(cè)倒伏數(shù)據(jù);谌珮O化SAR數(shù)據(jù)模擬簡縮極化SAR數(shù)據(jù)并對(duì)其進(jìn)行極化分解,利用簡縮極化SAR極化參數(shù)結(jié)合地面實(shí)測(cè)倒伏數(shù)據(jù)構(gòu)建小麥倒伏監(jiān)測(cè)模型,并進(jìn)行模型驗(yàn)證,從定性角度分析了簡縮極化SAR極化參數(shù)的后向散射特征對(duì)倒伏的響應(yīng)規(guī)律;(2)同步獲取研究區(qū)域2016年2景Radarsat-2雷達(dá)數(shù)據(jù)與地面實(shí)測(cè)小麥長勢(shì)參數(shù),提取全極化SAR極化參數(shù)的后向散射系數(shù)值,結(jié)合地面實(shí)測(cè)數(shù)據(jù)構(gòu)建水云模型,完成小麥生物量反演,從定量角度分析了雷達(dá)極化特征對(duì)生物量的響應(yīng)情況以及反演小麥生物量的效果,并與經(jīng)驗(yàn)?zāi)P头囱萁Y(jié)果進(jìn)行對(duì)比。得出以下結(jié)論:(1)在小麥抽穗灌漿期,出現(xiàn)倒伏的地塊線極化比uL顯著降低,而線極化度pL和極化度Dop呈現(xiàn)一定程度降低,且閾值分別為1.8、0.3和0.4附近時(shí)區(qū)分倒伏效果最佳,并與單極化SAR驗(yàn)證效果做對(duì)比,實(shí)驗(yàn)結(jié)果表明簡縮極化SAR監(jiān)測(cè)倒伏效果明顯,該方法為大面積監(jiān)測(cè)作物倒伏提供了依據(jù);(2)全極化SAR極化參數(shù)的后向散射系數(shù)對(duì)干生物量響應(yīng)明顯,對(duì)比水云模型和經(jīng)驗(yàn)?zāi)P桶l(fā)現(xiàn),8月11日HH極化參數(shù)反演的決定系數(shù)R2分別為0.6414和0.8426,實(shí)驗(yàn)結(jié)果表明水云模型基本可以達(dá)到經(jīng)驗(yàn)?zāi)P偷姆囱菪Ч?該方法可以為大范圍作物生物量反演提供一種技術(shù)支撐。
[Abstract]:Agriculture, as the foundation of the national economy, directly affects the steady development of our country and even the global economy. In order to meet the needs of the development of the times, the state has further increased its investment and support in agriculture. Precision agriculture monitoring can effectively guarantee the food security of our country, make the agriculture of our country develop from the traditional way to information, precision and modernization. The development of remote sensing technology provides a means for the large-scale crop growth monitoring. Traditional optical remote sensing is easily affected by the objective conditions of observation in the process of monitoring, which results in poor effectiveness of data. Synthetic Aperture radar synthetic Aperture radar (SAR) remote sensing technology can realize all-weather earth observation, and it has a certain penetrability. Not subject to weather conditions and sensitive to crop structural characteristics and moisture, it has a unique advantage in agricultural monitoring. At present, radar remote sensing is widely used in the agricultural field. Therefore, it is necessary to further study the agricultural application of contracted polarized SAR(Compact Polarimetric SAR.The qualitative monitoring of wheat lodging is completed based on the data of contracted polarized SAR and fully polarized SAR. Based on the water cloud model, the quantitative inversion of wheat biomass has been completed. In this paper, wheat is taken as the research object, and Shangkuili Farm in Erguna City, Inner Mongolia Autonomous region, is taken as the research area. Complete the following work: 1) simultaneously acquire 5 Radarsat-2 radar data and ground measured lodging data in the study area. Based on the fully polarized SAR data, we simulate and decompose the reduced polarized SAR data. A wheat lodging monitoring model was constructed by using reduced polarization SAR polarization parameters and ground measured lodging data, and the model was verified. From the qualitative point of view, the response of backscattering characteristics of SAR polarization parameters to lodging is analyzed. (2) the Radarsat-2 radar data obtained from the study area in 2016 and the wheat growth parameters measured on the ground are obtained simultaneously. The backscattering coefficients of the polarimetric parameters of the fully polarized SAR were extracted, and the water cloud model was constructed by combining the measured data on the ground to complete the retrieval of wheat biomass. The response of radar polarization characteristics to biomass and the effect of inversion of wheat biomass were analyzed quantitatively, and the results were compared with the results of empirical model inversion. The linear polarization of the landmass with lying down is significantly lower than that of ULL, while the linear polarization and polarization degree Dop are decreased to some extent, and the effect of distinguishing lodging is the best when the threshold values are 1.80.3,0.4, respectively, and the results are compared with that of unipolar SAR. The experimental results show that the effect of simple polarized SAR on monitoring lodging is obvious, and this method can provide a basis for monitoring crop lodging in large area. The backscattering coefficient of polarization parameters of fully polarized SAR has obvious response to dry biomass. Comparing with the water cloud model and the empirical model, it is found that the determination coefficient R2 of the HH polarization parameter inversion on August 11 is 0.6414 and 0.8426, respectively. The experimental results show that the water cloud model can basically achieve the inversion effect of the empirical model. This method can provide a technical support for large scale crop biomass inversion.
【學(xué)位授予單位】:西安科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S512.1;S127
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 查海涅;汪建飛;陳世勇;張振國;李新偉;劉吉?jiǎng)P;夏定勝;;基于GF-1影像的水稻拔節(jié)期地上部生物量估算[J];安徽科技學(xué)院學(xué)報(bào);2015年06期
2 崔懷洋;訾妍;徐暉;朱新開;;倒伏春性冬小麥冠層光譜特征及倒伏嚴(yán)重度預(yù)測(cè)[J];江蘇農(nóng)業(yè)科學(xué);2015年07期
3 謝鐳;張紅;王超;張波;吳樊;湯益先;;一種新的簡縮極化SAR圖像H/α特征空間[J];遙感技術(shù)與應(yīng)用;2015年01期
4 李宗南;陳仲新;王利民;劉佳;周清波;;基于小型無人機(jī)遙感的玉米倒伏面積提取[J];農(nóng)業(yè)工程學(xué)報(bào);2014年19期
5 楊浩;楊貴軍;顧曉鶴;李增元;陳爾學(xué);馮琦;楊小冬;;小麥倒伏的雷達(dá)極化特征及其遙感監(jiān)測(cè)[J];農(nóng)業(yè)工程學(xué)報(bào);2014年07期
6 張紅;謝鐳;王超;張波;吳樊;湯益先;;簡縮極化SAR數(shù)據(jù)信息提取與應(yīng)用[J];中國圖象圖形學(xué)報(bào);2013年09期
7 吳尚蓉;劉佳;王利民;李宗南;;基于圖像和光譜技術(shù)的倒伏冬小麥產(chǎn)量評(píng)估研究[J];中國農(nóng)業(yè)資源與區(qū)劃;2013年01期
8 胡宗杰;張杰;王召海;;灌漿期小麥倒伏后光譜變化特征[J];安徽農(nóng)業(yè)科學(xué);2011年06期
9 劉占宇;王大成;李波;黃敬峰;;基于可見光/近紅外光譜技術(shù)的倒伏水稻識(shí)別研究[J];紅外與毫米波學(xué)報(bào);2009年05期
10 劉良云,王紀(jì)華,宋曉宇,李存軍,黃文江,趙春江;小麥倒伏的光譜特征及遙感監(jiān)測(cè)[J];遙感學(xué)報(bào);2005年03期
相關(guān)博士學(xué)位論文 前2條
1 楊浩;基于時(shí)間序列全極化與簡縮極化SAR的作物定量監(jiān)測(cè)研究[D];中國林業(yè)科學(xué)研究院;2015年
2 安文韜;基于極化SAR的目標(biāo)極化分解與散射特征提取研究[D];清華大學(xué);2010年
相關(guān)碩士學(xué)位論文 前5條
1 徐鵬;洪澇脅迫的水稻長勢(shì)光譜響應(yīng)與災(zāi)情遙感評(píng)估[D];西安科技大學(xué);2014年
2 張曉倩;基于全極化SAR數(shù)據(jù)的水稻識(shí)別與作物參數(shù)估算模型[D];中國地質(zhì)大學(xué)(北京);2012年
3 張文龍;鎮(zhèn)域尺度農(nóng)田生態(tài)系統(tǒng)地上生物量遙感估算及地表有機(jī)碳儲(chǔ)量研究[D];山東農(nóng)業(yè)大學(xué);2011年
4 張杰;冬小麥倒伏遙感監(jiān)測(cè)研究[D];山東師范大學(xué);2011年
5 洪保章;毛豆遙感光譜與地上鮮生物量的相關(guān)性分析[D];福建農(nóng)林大學(xué);2006年
,本文編號(hào):1686927
本文鏈接:http://sikaile.net/kejilunwen/nykj/1686927.html