基于Landsat 8生長時(shí)序遙感信息的玉米干旱監(jiān)測(cè)研究
本文選題:Landsat 切入點(diǎn):8 出處:《石河子大學(xué)》2017年碩士論文
【摘要】:【目的】干旱地區(qū)水分科學(xué)合理使用是影響作物生長及社會(huì)穩(wěn)定的重要因素之一,作物干旱脅迫精準(zhǔn)監(jiān)測(cè)是實(shí)現(xiàn)精準(zhǔn)灌溉的基礎(chǔ),是作物節(jié)本增效的途徑。本研究利用Landsat8衛(wèi)星數(shù)據(jù)分析玉米生育期干旱植被指數(shù)變化規(guī)律及其與農(nóng)學(xué)干旱指標(biāo)的關(guān)系,探索Landsat 8衛(wèi)星數(shù)據(jù)應(yīng)用于玉米生長期干旱監(jiān)測(cè)的理論與方法,揭示研究區(qū)玉米干旱過程及旱情空間分布特征,為精準(zhǔn)灌溉提供理論依據(jù),提供實(shí)現(xiàn)農(nóng)業(yè)節(jié)本增效的技術(shù)及方法!痉椒ā坷谩3S”技術(shù),通過大田調(diào)查與定點(diǎn)采樣技術(shù)相結(jié)合,研究玉米生育期表征其干旱狀況的農(nóng)學(xué)參數(shù)以及基于Landsat 8數(shù)據(jù)的8種干旱遙感監(jiān)測(cè)植被指數(shù)的定量關(guān)系,構(gòu)建了新型的玉米干旱監(jiān)測(cè)指數(shù)。在此基礎(chǔ)上,將新型干旱監(jiān)測(cè)植被指數(shù)應(yīng)用于研究區(qū)2014-2016年的玉米生長期內(nèi)干旱脅迫監(jiān)測(cè),提出在玉米整個(gè)生育期利用衛(wèi)星數(shù)據(jù)進(jìn)行干旱脅迫監(jiān)測(cè)的方法!窘Y(jié)果】1.實(shí)現(xiàn)了基于Landsat 8衛(wèi)星數(shù)據(jù)的大田玉米種植面積的精準(zhǔn)監(jiān)測(cè),根據(jù)研究區(qū)作物的生長發(fā)育特點(diǎn)以及物候期的不同,利用決策樹分類方法對(duì)研究區(qū)2014-2016年玉米種植面積進(jìn)行了提取。2016年玉米種植面積提取精度高于2015年和2014年,2015年高于2014年,干旱程度不同對(duì)提取精度會(huì)造成一定的影響,水量充足年份,玉米長勢(shì)一致有利于提高提取精度。2.分析比較了歸一化植被指數(shù)(NDVI),歸一化水分指數(shù)(NDWI),水脅迫指數(shù)(MSI1、MSI2),植被供水指數(shù)(VSWI),多波段干旱指數(shù)(MBDI),溫度植被干旱指數(shù)(TVDI),并綜合水脅迫指數(shù)(MSI2)和溫度指數(shù)(LST)構(gòu)建了新型的玉米干旱監(jiān)測(cè)指數(shù)——冠層溫度水分指數(shù)(CTWDI),并與地面調(diào)查的土壤相對(duì)含水量,玉米冠層含水量,葉綠素含量進(jìn)行了相關(guān)性分析。結(jié)果表明:冠層溫度水分指數(shù)CTWDI與玉米冠層含水量,葉綠素含量相關(guān)性最高,擬合方程決定系數(shù)也最高,用CTWDI監(jiān)測(cè)玉米干旱狀況具有一定的優(yōu)勢(shì)。3.玉米高產(chǎn)試驗(yàn)田是在充分水肥管理基礎(chǔ)上實(shí)現(xiàn)的,其植被指數(shù)變化具有年際間的一致性,特別是在玉米生育期的中后期。利用監(jiān)督分類方法,以高產(chǎn)田作為水分充足樣本田,通過干旱植被指數(shù)的差異來判斷相對(duì)于高產(chǎn)田的干旱程度。分析了2014-2016年研究區(qū)玉米生育期(5月-9月)內(nèi)的NDVI、MSI2、CTWDI指數(shù)時(shí)間變化以及空間分布特點(diǎn),得出3年內(nèi)玉米生育期內(nèi)的干旱風(fēng)險(xiǎn)評(píng)價(jià)指標(biāo)。4.應(yīng)用冠層溫度水分指數(shù)(CTWDI)對(duì)研究區(qū)2014-2016年大田玉米干旱程度進(jìn)行了分級(jí),同時(shí)根據(jù)團(tuán)場(chǎng)統(tǒng)計(jì)調(diào)查的產(chǎn)量數(shù)據(jù)對(duì)研究區(qū)玉米干旱遙感監(jiān)測(cè)分級(jí)結(jié)果進(jìn)行了精度檢驗(yàn)。結(jié)果表明:2014年總體精度和Kappa系數(shù)分別為87.3%和0.84,2015年相對(duì)精度和Kappa系數(shù)分別為83%和0.71,2016年的分別為81.2%和0.57。越干旱年份,干旱監(jiān)測(cè)結(jié)果越可靠!窘Y(jié)論】基于Landsat 8生長時(shí)序遙感信息對(duì)研究區(qū)玉米干旱監(jiān)測(cè)結(jié)果較好,實(shí)現(xiàn)了利用遙感技術(shù)對(duì)研究區(qū)玉米的干旱監(jiān)測(cè)。
[Abstract]:[Objective] the rational use of water in arid areas of science is one of the important factors affecting social stability and growth of crops, crop drought monitoring is the foundation to realize the precision of precision irrigation, is a way to crops efficiency. This study using the Landsat8 satellite data analysis arid vegetation index variation of maize and its relationship with agricultural drought index, exploration the application of Landsat 8 satellite data on maize growth theory and method of drought monitoring, revealing the distribution characteristics of drought process and spatial drought corn research area, to provide a theoretical basis for precision irrigation, provide implementation techniques and methods of agricultural high efficiency. [method] the use of "3S" technology, through investigation and field sampling point combination study on Maize agronomic parameters characterizing the drought conditions and 8 Drought Remote Sensing Monitoring Vegetation Index Based on Landsat 8 data The quantitative relationship between the number of constructed maize drought monitoring index model. On this basis, the model of Drought Monitoring Vegetation index used in the study area 2014-2016 years of maize growth period of drought stress monitoring method is proposed for monitoring drought stress in the whole growth period of maize using satellite data. [result] 1. to achieve a precise monitoring of Landsat 8 satellite data based on field corn planting area, according to the growth characteristics and different phenological periods of crop in study area, using the decision tree classification method to extract.2016 corn planting area extraction accuracy is higher than in 2015 and 2014 of 2014-2016 years of corn planting area in 2015 than in 2014, the degree of drought on the extraction accuracy will be different a certain impact, adequate water year, corn growing consistently helps to improve the extraction accuracy of.2. analysis and comparison of the normalized difference vegetation index The number (NDVI), normalized difference water index (NDWI), water stress index (MSI1, MSI2), vegetation water index (VSWI), multiband drought index (MBDI), the Temperature Vegetation Drought Index (TVDI), and the water stress index (MSI2) and temperature index (LST) and constructed a new type of maize drought the monitoring index of canopy temperature moisture index (CTWDI), and the ground survey of relative soil water content, canopy water content, chlorophyll content were analyzed. The results showed that the canopy temperature and moisture index CTWDI and maize canopy water content, the chlorophyll content of the highest correlation coefficient of fitting equation of decision is the highest, with CTWDI maize drought monitoring the status of.3. has the advantage of high yield of maize field test is based on a certain sufficient fertilizer and water management, consistent with the inter annual change of vegetation index, especially in maize growth in the late period. Using supervised classification method With sufficient water as high fields, like Honda, the differences in drought vegetation index to determine the degree of drought. Compared to the high yield field analysis of 2014-2016 years of the study area for maize growth period (May -9 months) in NDVI, MSI2, CTWDI index, time variation and spatial distribution of the 3 years of maize growth period drought risk assessment index.4. canopy temperature moisture index (CTWDI) of the study area 2014-2016 years of field corn drought degree were graded, and according to the accuracy test of maize drought monitoring by remote sensing classification results yield data farm survey. The results showed that in 2014 the overall accuracy and Kappa coefficient were 87.3% and 0.842015 years the relative accuracy and Kappa coefficient were 83% and 0.712016 years were 81.2% and 0.57. more drought, drought monitoring results more reliable. [Conclusion] Based on the Landsat 8 long The monitoring results of maize drought in the study area were better by the sequence remote sensing information, and the drought monitoring of Maize in the study area was realized by using remote sensing technology.
【學(xué)位授予單位】:石河子大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S513;S127;S423
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郝小翠;張強(qiáng);楊澤粟;王曉巍;岳平;韓濤;王勝;;一種基于地表能量平衡的遙感干旱監(jiān)測(cè)新方法及其在甘肅河?xùn)|地區(qū)干旱監(jiān)測(cè)中的應(yīng)用初探[J];地球物理學(xué)報(bào);2016年09期
2 權(quán)文婷;周輝;李紅梅;何慧娟;能佳;;FY-3C/MERSI與MODIS的多波段干旱指數(shù)反演及對(duì)比分析[J];干旱區(qū)地理;2016年04期
3 孫曉東;劉桂香;包玉海;路艷峰;;基于降水距平百分率的蘇尼特草原干旱特征分析[J];內(nèi)蒙古農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年02期
4 劉憲鋒;朱秀芳;潘耀忠;李雙雙;劉焱序;;農(nóng)業(yè)干旱監(jiān)測(cè)研究進(jìn)展與展望[J];地理學(xué)報(bào);2015年11期
5 羅少華;胡菊芳;鞏志宇;;基于MODIS的江西省2011年春旱遙感監(jiān)測(cè)技術(shù)研究[J];氣象水文海洋儀器;2015年03期
6 黃友昕;劉修國;沈永林;劉詩詩;孫飛;;農(nóng)業(yè)干旱遙感監(jiān)測(cè)指標(biāo)及其適應(yīng)性評(píng)價(jià)方法研究進(jìn)展[J];農(nóng)業(yè)工程學(xué)報(bào);2015年16期
7 王建博;王蕾彬;;基于植被供水指數(shù)的山東省2013年春季旱情監(jiān)測(cè)[J];山東農(nóng)業(yè)科學(xué);2015年07期
8 殷飛;金世佳;;遙感在農(nóng)業(yè)旱情監(jiān)測(cè)中的應(yīng)用現(xiàn)狀與展望[J];干旱環(huán)境監(jiān)測(cè);2015年02期
9 鄭興明;丁艷玲;趙凱;姜濤;李曉峰;張世軼;李洋洋;武黎黎;孫建;任建華;張宣宣;;基于Landsat 8 OLI數(shù)據(jù)的玉米冠層含水量反演研究[J];光譜學(xué)與光譜分析;2014年12期
10 張U,
本文編號(hào):1673263
本文鏈接:http://sikaile.net/kejilunwen/nykj/1673263.html