大別山上舍小流域不同林分土壤侵蝕特征研究
本文選題:大別山區(qū) 切入點:土壤抗蝕性 出處:《南京林業(yè)大學》2015年碩士論文
【摘要】:本試驗通過對大別山馬尾松林、杉木林和桑園土壤分析,可以系統(tǒng)性地掌握大別山典型土壤的理化性質(zhì),對馬尾松林和桑園土壤的抗侵蝕能力進行了評定,并且通過擾動土人工模擬降雨,研究了植物籬帶和植被覆蓋度對大別山土壤坡面的土壤侵蝕影響。得出主要結(jié)論為:(1)土壤有機C、N空間變異顯著大別山馬尾松林和杉木林土壤有機C、N和隨著土層深度的增加而減小,而桑園由于人為耕作和施肥導致土壤有機C和N含量較均勻;淺層土壤有機C含量:馬尾松林杉木林桑園,桑園土壤N含量顯著高于馬尾松土壤和杉木林土壤;土壤有機C的含量變化與2mm土壤團聚體含量變化有相似趨勢。(2)土壤團聚體變異多樣化大別山馬尾松林和杉木林土壤2mm團聚體含量由表層到深層遞減,馬尾松土壤表層團聚體最高達71.80%,大團聚體總量越高抗侵蝕能力越強,證明了下層土壤抗侵蝕性比上層土壤的抗蝕性弱;馬尾松集水區(qū)粘粒1.87%和砂粒48.13%組成略大于馬尾松各層次土壤;杉木林集水區(qū)的土壤顆粒是由土壤的淺層以下沖刷而下。(3)根系主導土壤抗侵蝕性大別山典型土壤利用類型馬尾松林和桑園,土壤抗蝕性強弱表現(xiàn)為馬尾松林桑園;表層(0—10 cm)范圍內(nèi),根長的排列順序為:桑園地馬尾松,各樣地土壤抗蝕性在垂直層面上的變化呈較明顯的規(guī)律性,即隨著土層深度的增加,抗蝕性呈減小趨勢;兩種土地利用類型根系主要分布在0—30 cm層次內(nèi),而且在1 mm的根系長度由表層向深層遞減,土壤平均孔徑隨著深度的增加而減小,而土壤比表面積隨著深度的增加而增大。(4)土壤孔徑特征可以作為流失土壤來源參考屬性大別山馬尾松對0—40 cm次層土壤結(jié)構(gòu)影響顯著,各層次孔徑分布呈分層現(xiàn)象,而桑園各層次土壤孔徑分布差異不大。土壤孔徑越大,土壤抗蝕性越強,土壤比表面積越大土壤抗蝕性越小;桑園土壤抗蝕性與土壤土壤根系質(zhì)量在0.01水平上顯著相關,馬尾松土壤平均孔徑與土壤根系質(zhì)量在0.05水平上顯著相關。降雨時馬尾松林地坡面壤中流在下坡蓄滿流出地表帶處顆粒,導致馬尾松徑流場土壤和10—20 cm層次土壤大孔徑分布完全吻合,而桑園人為翻種頻繁,導致土壤層次性質(zhì)相似,降雨時表層土壤顆粒流失嚴重。(5)植物籬攔沙截流效應顯著模擬降雨研究發(fā)現(xiàn),土壤有機碳流失量隨著降雨強度的增加而增加,影響土壤有機碳流失三種因素強弱關系:降雨強度土壤植被覆蓋度土地坡度;在5°80mm/h下,1.5m和3m植物籬覆蓋土壤在降雨初期不會產(chǎn)生徑流;3m植物籬減流率6.89%—10.05%;減沙率4.30%—9.38%;1.5m植物籬減流率24.55%—70.67%,減沙率25.96%—58.63%;1m植物籬覆蓋徑減流率48.38%—78.67%,減沙率42.37%—73.02%;由于植物籬地表覆蓋和地下根系的攔流截沙,徑流泥沙砂粒所占比例裸地1m植物籬1.5m植物籬3m植物籬,粘粒比例則相反3m植物籬1.5m植物籬1m植物籬裸地。
[Abstract]:Through the soil analysis of Pinus massoniana forest, Chinese fir forest and mulberry garden in Dabie Mountain, the physical and chemical properties of typical soil in Dabie Mountain were systematically grasped, and the soil erosion resistance of Pinus massoniana forest and mulberry orchard was evaluated. And artificial simulation of rainfall through disturbed soil, The effects of hedgerow and vegetation coverage on soil erosion in Dabie Mountain were studied. The main conclusions were as follows: 1) the spatial variation of soil organic C ~ (1) N in Pinus massoniana forest and Chinese fir forest in Dabie Mountain was significant, and with the depth of soil layer. The degree increases and decreases, The soil organic C and N contents in mulberry garden were uniform due to manmade tillage and fertilization, and the organic C content in shallow soil was significantly higher than that in Pinus massoniana forest and Chinese fir forest, and the N content in mulberry garden was significantly higher than that in Pinus massoniana and Chinese fir forest soil. The variation of soil organic C content was similar to that of 2mm soil aggregate content. (2) the variation of soil aggregates varied from surface layer to deep layer in Pinus massoniana forest and Chinese fir forest in Dabie Mountain. The surface aggregate of Pinus massoniana soil reached 71.80, and the higher the aggregate amount was, the stronger the erosion resistance of the lower soil was, which proved that the erosion resistance of the lower soil was weaker than that of the upper soil. The composition of clay and sand in Pinus massoniana catchment was 1.87% and 48.13% respectively. The soil particles in the catchment area of Chinese fir forest were washed down from the shallow layer of soil. The root system dominated the typical soil use types of Masson pine forest and mulberry orchard in Dabie Mountain, and the soil erosion resistance was shown as the mulberry garden of Masson pine forest. In the range of 0-10 cm), the order of root length was as follows: Pinus massoniana in mulberry garden, soil erosion resistance of various plots changed more regularly on vertical level, that is, with the increase of soil depth, the corrosion resistance decreased; The root system of the two land use types mainly distributed in 0-30 cm level, and the root length of 1 mm decreased from the surface layer to the deep layer, and the average pore diameter of the soil decreased with the increase of soil depth. The soil specific surface area increases with the increase of soil depth. 4) the soil pore size characteristics can be used as a reference attribute for soil loss. Pinus massoniana has a significant effect on the soil structure of 0-40 cm layer, and the pore size distribution of each layer is stratified. The larger the soil pore size, the stronger the soil erosion resistance, the smaller the soil specific surface area, the lower the soil corrosion resistance, and the higher the soil root quality, the more significant the soil erosion resistance of mulberry orchard is at 0.01 level, and the higher the soil specific surface area is, the smaller the soil specific surface area is. The average pore size of Pinus massoniana soil was significantly correlated with soil root quality at 0.05 level. The results showed that the large pore size distribution of Pinus massoniana runoff field was consistent with that of soil at 10 ~ (-20 cm) cm level, while the mulberry garden was planted frequently, which resulted in similar soil properties. The results showed that the soil organic carbon loss increased with the increase of rainfall intensity. There are three factors influencing soil organic carbon loss: rainfall intensity, soil vegetation cover degree, land slope; At the beginning of rainfall, the runoff reduction rate of 3 m hedgerow will not be 6.89-10.05; the sediment reduction rate of 4.30- 9.38m hedgerow is 24.55-70.67; the sediment reduction rate is 25.96- 58.63m hedgerow coverage diameter; the sediment reduction rate is 48.38-78.67m; the sediment reduction rate is 42.37-73.02.The sediment reduction rate is 42.37-73.02.The sediment reduction rate is 42.37-73.02.The sediment reduction rate is 24.55-70.67, and the sediment reduction rate is 25.96- 58.63m hedgerow covering diameter 48.38-78.67.The sediment reduction rate is 42.37-73.02. And the flow and interception of the underground roots, The proportion of sand and sand in runoff was 1.5 m hedgerow 3m in bare land, whereas the ratio of clay grain was opposite to that of 1m hedgerow in 3 m hedgerow on bare land.
【學位授予單位】:南京林業(yè)大學
【學位級別】:碩士
【學位授予年份】:2015
【分類號】:S714.7
【參考文獻】
相關期刊論文 前10條
1 韓潤燕;陳彥云;李旺霞;;不同微地形固定沙丘地上植被、土壤種子庫和土壤含水量的分布特征[J];草業(yè)科學;2014年10期
2 袁久芹;梁音;曹龍熹;;紅壤坡地香根草植物籬產(chǎn)流產(chǎn)沙過程模擬[J];中國水土保持科學;2014年04期
3 何淑勤;宮淵波;鄭子成;孔祥東;;不同植被類型條件下土壤抗蝕性變化特征及其影響因素[J];水土保持學報;2013年05期
4 王遼宏;邱莉萍;高海龍;張興昌;;農(nóng)牧交錯帶本氏針茅坡地土壤-植物系統(tǒng)磷素分布特征[J];植物營養(yǎng)與肥料學報;2013年05期
5 劉旦旦;張鵬輝;王健;肖慶利;;黃土坡面不同土地利用類型土壤抗蝕性對比[J];林業(yè)科學;2013年09期
6 魏霞;李占斌;李勛貴;;黃土高原坡溝系統(tǒng)土壤侵蝕研究進展[J];中國水土保持科學;2012年01期
7 李君蘭;蔡強國;孫莉英;陳俊杰;;降雨強度、坡度及坡長對細溝侵蝕的交互效應分析[J];中國水土保持科學;2011年06期
8 祖元剛;李冉;王文杰;蘇冬雪;王瑩;邱嶺;;我國東北土壤有機碳、無機碳含量與土壤理化性質(zhì)的相關性[J];生態(tài)學報;2011年18期
9 周毅;魏天興;解建強;石鑫;葛根巴圖;董哲;程中秋;;黃土高原不同林地類型水土保持效益分析[J];水土保持學報;2011年03期
10 張會茹;鄭粉莉;;不同降雨強度下地面坡度對紅壤坡面土壤侵蝕過程的影響[J];水土保持學報;2011年03期
相關博士學位論文 前2條
1 趙純清;植物籬攔擋對溝道徑流水力特性及挾沙力影響的模擬研究[D];華中農(nóng)業(yè)大學;2014年
2 張學權(quán);華西雨屏區(qū)林(竹)+草植被恢復生態(tài)功能及冠層適宜郁閉度研究[D];四川農(nóng)業(yè)大學;2005年
相關碩士學位論文 前9條
1 閔俊杰;不同植被格局下人工模擬降雨對坡面侵蝕的影響[D];南京林業(yè)大學;2012年
2 唐天云;華西雨屏區(qū)四種植被恢復模式水土保持效益分析[D];四川農(nóng)業(yè)大學;2008年
3 李曉佳;大青山南北坡不同海拔高度表土理化性質(zhì)研究[D];內(nèi)蒙古師范大學;2008年
4 張魯;縱向嶺谷區(qū)坡度因子對坡面土壤侵蝕影響的研究[D];昆明理工大學;2008年
5 潘義國;不同植被條件下土壤的抗侵蝕研究[D];貴州大學;2008年
6 包耀賢;黃土丘陵溝壑區(qū)壩地和梯田土壤理化性質(zhì)研究[D];西北農(nóng)林科技大學;2005年
7 胡迅;杉木林草間作初期林下土壤理化性質(zhì)及水土保持研究[D];四川農(nóng)業(yè)大學;2005年
8 梁劍;四川洪雅幾種退耕還林模式土壤改良效果的研究[D];四川農(nóng)業(yè)大學;2005年
9 王巧紅;四川廣元市不同植被恢復類型土壤氮素動態(tài)研究[D];四川農(nóng)業(yè)大學;2005年
,本文編號:1672561
本文鏈接:http://sikaile.net/kejilunwen/nykj/1672561.html