基于ORYZA2000模型對(duì)江蘇不同播期水稻高溫?zé)岷Φ脑u(píng)估
本文選題:江蘇 切入點(diǎn):播期 出處:《南京信息工程大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:水稻是我國(guó)重要的糧食作物,對(duì)于國(guó)家糧食安全穩(wěn)定具有重要意義,但當(dāng)前水稻面臨著不同氣象災(zāi)害的影響,尤其是高溫?zé)岷。適宜播期的選擇能有效地降低水稻遭受高溫危害的程度,從而實(shí)現(xiàn)水稻的高產(chǎn)和穩(wěn)產(chǎn)。因此,本文以兩個(gè)高溫指標(biāo)(連續(xù)3d及以上最高氣溫(Tmax)≥35℃和均溫(Tave)≥30℃)對(duì)江蘇7個(gè)站點(diǎn)1966~2015年高溫?zé)岷Φ那闆r進(jìn)行時(shí)間和空間上的分析;繼而基于2012和2013年兩年的試驗(yàn)數(shù)據(jù),分析播期對(duì)水稻生長(zhǎng)發(fā)育及產(chǎn)量的影響,為適宜播期的選擇提供理論上的支撐;在上述基礎(chǔ)上,對(duì)原ORYZA2000模型進(jìn)行光合、呼吸和穗干物質(zhì)分配系數(shù)部分溫度因子上的改進(jìn);最后,運(yùn)用改進(jìn)后的模型對(duì)南京和吳縣東山兩個(gè)高溫發(fā)生比較嚴(yán)重的站點(diǎn)進(jìn)行4個(gè)播期1966~2015年高溫情況的模擬和評(píng)估,為適宜播期的選擇提供參考。得到的主要結(jié)論如下:(1) 1966~2015年間,江蘇地區(qū)Tmax≥35℃和Tave≥30°C兩個(gè)臨界溫度可能出現(xiàn)的時(shí)間基本都處在125~250d之間,其中175~225d之間Tmax≥35℃發(fā)生概率主要以低于Tave發(fā)生概率為主,并且除徐州站外,其余站點(diǎn)越接近210d,Tmax≥35℃發(fā)生概率與Tave≥30℃相差越大;過(guò)去50年水稻生長(zhǎng)季內(nèi)(4~10月)各月連續(xù)3d及以上Tmax≥35℃和Tave≥30℃的天數(shù)及積溫的各月均值在同一站點(diǎn)的情況基本一致,最高值出現(xiàn)在7月;多年變化趨勢(shì)整體以增溫為主,但均溫指標(biāo)更明顯。兩個(gè)高溫中心多年均處在江蘇的西南部,并隨著時(shí)間推移向東南方向移動(dòng),但最高氣溫對(duì)應(yīng)的高溫中心多年移動(dòng)范圍更大。(2)播期的差異造成了生育階段與氣象因子配置的不同。兩個(gè)高溫指標(biāo)顯示各播期受高溫危害的程度基本一致。在水稻高溫敏感階段內(nèi),2012年第1播期出現(xiàn)1次輕度高溫?zé)岷?2013年第2和3播期均出現(xiàn)1次重度,第4播期出現(xiàn)1次輕度;而抽穗開花期僅2013年第2和3播期出現(xiàn)連續(xù)7d的中度高溫。而不同播期各生育階段對(duì)應(yīng)氣象因子的差異又造成了生育階段長(zhǎng)度及產(chǎn)量的不同。相關(guān)分析結(jié)果表明,2012年和2013年前兩個(gè)播期產(chǎn)量均與后三個(gè)播期產(chǎn)量差異達(dá)到顯著性水平(p0.05)。分析各生育階段長(zhǎng)度和產(chǎn)量與各階段平均日最高氣溫、均溫、降水和輻射的關(guān)系發(fā)現(xiàn),與溫度因子的關(guān)系相對(duì)最緊密,尤其是平均日最高氣溫。(3)調(diào)整最大光合速率與溫度的關(guān)系,改進(jìn)呼吸速率計(jì)算過(guò)程中的葉溫和穗溫,同時(shí)對(duì)穗干物質(zhì)分配系數(shù)進(jìn)行高溫訂正,以此對(duì)模型進(jìn)行改進(jìn),并分別對(duì)改進(jìn)前后模型的模擬結(jié)果與實(shí)際值進(jìn)行比較。相比改進(jìn)前,改進(jìn)后模型模擬穗生物量、綠葉生物量、枯葉生物量、LAI和產(chǎn)量與實(shí)測(cè)值的均方根誤差(RMSE)和歸一化均方根誤差(NRMSE)都有所減小,其中產(chǎn)量和穗生物量的NRMSE減小較為明顯,分別減小和2.23%和1.83%;而從模擬值和實(shí)測(cè)值的1:1圖來(lái)看,改進(jìn)后模型對(duì)2013年地上部分總生物量的模擬效果有所提高,模擬值和實(shí)測(cè)值的線性回歸系數(shù)更接近1。運(yùn)用改進(jìn)后的模型分別對(duì)南京和吳縣東山兩個(gè)站點(diǎn)1966~2015年120d、130d、140d和151d四個(gè)播期在實(shí)際氣象條件和常年氣象條件下的產(chǎn)量進(jìn)行模擬。從整個(gè)50年高溫對(duì)產(chǎn)量的影響來(lái)看,兩個(gè)站點(diǎn)均表現(xiàn)為120d播期受高溫影響造成的減產(chǎn)年份最多,產(chǎn)量減少總體最明顯;而151d播期產(chǎn)量變化率波動(dòng)最小,且減產(chǎn)都不明顯,因此,認(rèn)為選擇151d左右作為這兩個(gè)站點(diǎn)的播期更有利于獲得產(chǎn)量的穩(wěn)定。
[Abstract]:Rice is an important food crop in China, is of great significance for the national food security and stability, but the current rice faced with influence of different meteorological disasters, especially high temperature. Suitable sowing selection can effectively reduce the temperature of rice suffered damage, so as to realize rice production. Therefore, this paper takes two a high temperature index (continuous 3D and above the highest temperature more than 35 DEG C (Tmax) and temperature (Tave) of more than 30 DEG C) were analyzed in terms of time and space at 7 stations in Jiangsu for 1966~2015 years of heat damage; then based on the test data of 2012 and 2013 for two years, analyzed the effect of sowing date on growth and yield rice, for providing a theoretical support for the choice of sowing date; on the basis of the above, the original ORYZA2000 model of photosynthesis, respiration and panicle dry matter distribution coefficient of temperature improved factor; finally, using the improved The model of the 4 sowing period of 1966~2015 years of high temperature environment simulation and evaluation of Nanjing and Wuxian Dongshan two high temperature serious site, suitable sowing date for the reference. The main conclusions are as follows: (1) 1966~2015, Tmax in Jiangsu area of more than 35 DEG C and Tave = 30 ~ C two the critical temperature of the possible time basically in 125 ~ 250D, 175 ~ 225d between Tmax = 35 DEG C to Tave below the probability of occurrence probability, and in addition to the XuZhou Railway Station, the site is close to 210D, Tmax more than 35 DEG C and the probability of Tave less than 30 DEG C is bigger; the past 50 years the growth of rice the quarter (4~10 months) days and accumulated temperature of each month continuous 3D and above Tmax = 35 and Tave = 30 DEG C of the monthly average in the same site is basically the same, the highest value in July years; the overall trend to increase the temperature of the main, but refers to the temperature The subject is more obvious. Two years are in the high temperature center in southwestern Jiangsu, and with the passage of time, moving to the southeast, but the high temperature center moving range corresponding to the maximum temperature for many years more. (2) sowing time difference caused by the growth stage and the meteorological factors of different configurations. Two high temperature indicators in different sowing dates under high temperature, the extent of the damage is basically the same. In rice high temperature sensitive stage in 2012 first sowing 1 mild heat damage, 2013 second and third sowing period was 1 severe, fourth sowing 1 mild and flowering stage; only in 2013 second and third sowing of consecutive 7d moderate high temperature differences and different. Sowing in different growth stages and corresponding meteorological factors resulting in length and yield in different growth stages. The results of correlation analysis showed that in 2012 and 2013 two before sowing and yield were three months after sowing yield difference reached significant level (P0.05) analysis. The highest temperature, the average length of each growth stage and yield with different stages of temperature, precipitation and radiation that the relationship between the temperature and the relative factors most closely, especially the average daily maximum temperature. (3) the adjustment of the relationship between the maximum photosynthetic rate and temperature, leaf temperature and calculation process ear temperature improved the respiratory rate, and temperature correction on the spike dry matter distribution coefficient, in order to improve the model, and respectively before and after the improvement of model simulation results were compared with the actual value. Compared with before improvement, the improved model simulation of spike biomass, leaf biomass, leaf biomass, root mean square error and LAI the yield and the measured value (RMSE) and the normalized root mean square error (NRMSE) is reduced, the yield and spike biomass of NRMSE decreased significantly, and decreased 2.23% and 1.83% respectively; and from the simulated and measured values of 1:1 chart, improvement After the 2013 model of the total aboveground biomass of the simulation results improved, simulation of linear regression coefficient value and the measured value is closer to 1. using the improved model respectively in Nanjing and Wuxian Dongshan two sites 1966~2015 years 120d, 130d, 140d and 151d four sowing dates as perennial conditions and meteorological conditions in the actual production of gas from the simulation. The whole 50 years of high temperature on the yield of view, the two sites showed 120d sowing time affected by high temperature caused by the reduction of the year most, the most obvious decrease of overall yield; sowing date and 151d yield change rate minimum volatility, and production is not obvious, therefore, think about 151d as more sowing time of these two sites to obtain stable production.
【學(xué)位授予單位】:南京信息工程大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:S511;S42
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐敏;徐經(jīng)緯;徐樂(lè);高蘋;于庚康;任義方;;水稻農(nóng)業(yè)氣候資源變化特征及影響分析——以江蘇稻區(qū)為例[J];中國(guó)農(nóng)學(xué)通報(bào);2016年18期
2 王亞梁;張玉屏;朱德峰;向鏡;陳惠哲;張義凱;;水稻器官形態(tài)和干物質(zhì)積累對(duì)穗分化不同時(shí)期高溫的響應(yīng)[J];中國(guó)水稻科學(xué);2016年02期
3 王曉梅;江曉東;楊沈斌;王萌萌;蘇海報(bào);;不同播期對(duì)水稻秧苗素質(zhì)的影響[J];江蘇農(nóng)業(yè)科學(xué);2016年01期
4 周建霞;張玉屏;朱德峰;向鏡;陳曉陽(yáng);;高溫下開花時(shí)間對(duì)水稻穎花育性的影響[J];雜交水稻;2015年04期
5 王U_梅;李巖;劉明;李剛?cè)A;劉正輝;唐設(shè);丁承強(qiáng);王紹華;丁艷鋒;;營(yíng)養(yǎng)生長(zhǎng)期高溫對(duì)水稻生長(zhǎng)及干物質(zhì)積累的影響[J];中國(guó)稻米;2015年04期
6 李巖;劉明;王高鵬;李剛?cè)A;劉正輝;唐設(shè);丁承強(qiáng);王紹華;丁艷鋒;;營(yíng)養(yǎng)生長(zhǎng)期高溫脅迫對(duì)水稻生育后期耐冷性的影響[J];南京農(nóng)業(yè)大學(xué)學(xué)報(bào);2016年01期
7 曹陽(yáng);楊婕;熊偉;武永峰;馮靈芝;楊曉光;;1962-2010年潛在干旱對(duì)中國(guó)冬小麥產(chǎn)量影響的模擬分析[J];農(nóng)業(yè)工程學(xué)報(bào);2014年07期
8 曹陽(yáng);楊婕;熊偉;武永峰;馮靈芝;楊曉光;;1961—2010年潛在干旱對(duì)我國(guó)夏玉米產(chǎn)量影響的模擬分析[J];生態(tài)學(xué)報(bào);2014年02期
9 許軻;孫圳;霍中洋;戴其根;張洪程;劉俊;宋云生;楊大柳;魏海燕;吳愛國(guó);王顯;吳冬冬;;播期、品種類型對(duì)水稻產(chǎn)量、生育期及溫光利用的影響[J];中國(guó)農(nóng)業(yè)科學(xué);2013年20期
10 沈永平;王國(guó)亞;;IPCC第一工作組第五次評(píng)估報(bào)告對(duì)全球氣候變化認(rèn)知的最新科學(xué)要點(diǎn)[J];冰川凍土;2013年05期
相關(guān)會(huì)議論文 前2條
1 朱寶;孫佳麗;胡榮辰;魏曉奕;翟伶俐;;近50年江蘇農(nóng)業(yè)氣候資源的變化特征分析[A];第九屆長(zhǎng)三角氣象科技論壇論文集[C];2012年
2 包云軒;劉維;高蘋;申雙和;;基于兩種指標(biāo)的江蘇省水稻高溫?zé)岷Πl(fā)生規(guī)律的研究[A];第28屆中國(guó)氣象學(xué)會(huì)年會(huì)——S11氣象與現(xiàn)代農(nóng)業(yè)[C];2011年
相關(guān)博士學(xué)位論文 前1條
1 曹云英;高溫對(duì)水稻產(chǎn)量與品質(zhì)的影響及其生理機(jī)制[D];揚(yáng)州大學(xué);2009年
相關(guān)碩士學(xué)位論文 前4條
1 孫誠(chéng);白天增溫和夜間增溫對(duì)水稻氮素積累及利用效率的影響[D];華中農(nóng)業(yè)大學(xué);2014年
2 朱李陽(yáng);播期和晝夜高溫對(duì)水稻產(chǎn)量和稻米品質(zhì)的影響及其生理機(jī)制[D];華中農(nóng)業(yè)大學(xué);2011年
3 張倩;長(zhǎng)江中下游地區(qū)高溫?zé)岷?duì)水稻的影響評(píng)估[D];中國(guó)氣象科學(xué)研究院;2010年
4 張彬;抽穗開花期高溫對(duì)水稻產(chǎn)量和品質(zhì)的影響及生態(tài)避熱技術(shù)途徑[D];南京農(nóng)業(yè)大學(xué);2006年
,本文編號(hào):1614846
本文鏈接:http://sikaile.net/kejilunwen/nykj/1614846.html