翻耕位置和深度對(duì)坡耕地水土流失的影響
本文關(guān)鍵詞: 人工降雨 坡度 翻耕位置 翻耕深度 產(chǎn)流 產(chǎn)沙 出處:《山西農(nóng)業(yè)大學(xué)》2015年碩士論文 論文類型:學(xué)位論文
【摘要】:為研究坡耕地上不同翻耕位置和深度的水土流失影響,本試驗(yàn)選在山西省呂梁市方山縣沙溝水土保持監(jiān)測(cè)站,在55mm/h雨強(qiáng)條件下對(duì)不同坡度(5°、10°、15°)、不同翻耕位置(坡面上部、坡面中部、坡面下部)及不同翻耕深度(10cm、15cm、20cm)共27種組合條件進(jìn)行人工模擬降雨,研究不同的處理組合對(duì)坡面徑流和土壤侵蝕的影響,經(jīng)過分析主要得出以下結(jié)論:(1)在55mm/h雨強(qiáng)條件下,開始產(chǎn)流時(shí)間隨著坡度的增大而減小,隨翻耕位置的上、中、下依次增大,隨著翻耕深度的增加而增加;坡度、翻耕位置及翻耕深度對(duì)開始產(chǎn)流時(shí)間的均為極顯著影響(P0.01),且顯著水平表現(xiàn)為:坡度翻耕位置翻耕深度。(2)在55mm/h雨強(qiáng)條件下,不論哪種組合條件,徑流隨時(shí)間均是先增大后逐漸趨于穩(wěn)定;徑流量隨著坡度的增加而增加,隨著翻耕位置的中、上、下而增大,隨著翻耕深度的增大而減小;坡度及翻耕位置對(duì)產(chǎn)流開始后27mmin所得到的徑流總量均為極顯著影響(P0.01),翻耕深度對(duì)產(chǎn)流開始后27mmin所得到的徑流總量影響不顯著(P0.05);對(duì)徑流總量影響顯著水平表現(xiàn)為:坡度翻耕位置翻耕深度。(3)在55mm/h雨強(qiáng)條件下,不論哪種組合條件,坡面徑流泥沙濃度隨降雨的進(jìn)行整體上呈現(xiàn)先減小,后逐漸趨于平穩(wěn)的狀態(tài);坡面徑流泥沙濃度隨坡度的增大而增大,產(chǎn)流開始后27mmin所得到的累計(jì)泥沙量隨著翻耕位置的中、上、下而增大,隨著翻耕深度的增大而增大;坡度及翻耕位置對(duì)產(chǎn)流開始后27min所得到的累計(jì)產(chǎn)沙量均影響顯著,且顯著水平為極顯著(P0.01),翻耕深度對(duì)累計(jì)產(chǎn)沙量影響不顯著;對(duì)累計(jì)產(chǎn)沙量影響顯著水平表現(xiàn)為:坡度翻耕位置翻耕深度。(4)坡地開荒選在坡面中部水土保持效益明顯,坡面中部開荒比坡面上部開荒減少產(chǎn)流12.9%~16.0%,減少產(chǎn)沙3.3%~8.1%;坡面中部開荒比坡面下部開荒減少產(chǎn)流31.6%~37.8%,減少產(chǎn)沙40.5%~53.3%。
[Abstract]:In order to study the effects of soil erosion on different tilling positions and depths on sloping farmland, the experiment was conducted at the Shagou soil and Water Conservation Monitoring Station of Fangshan County, Luliang City, Shanxi Province. Under the condition of 55 mm / h rain intensity, the soil and water conservation sites of different slope degrees were 5 擄/ 10 擄/ 15 擄and different tilling positions (upper part of the slope), respectively. The effects of different treatments on runoff and soil erosion were studied by artificial simulation of rainfall under 27 combinations of different tillage depths (10 cm ~ (15) cm ~ (20 cm)) and different tillage depth (10 cm ~ (10) ~ 15 cm ~ (20 cm)) in the middle and lower part of slope surface. The main conclusions are as follows: (1) under the condition of 55 mm / h rain intensity, the beginning time of runoff production decreases with the increase of slope, increases in turn with the top, middle and lower of tilling position, and increases with the increase of tillage depth. The effects of tilling position and depth on the initial runoff yield were very significant, and the significant level was as follows: tilling depth of tilling position at slope tilling position. (2) under 55 mm / h rain intensity, no matter which combination condition, Runoff increases first and then tends to be stable with time, runoff increases with the increase of slope, increases with the middle, top and bottom of tilling position, and decreases with the increase of tillage depth. The slope and tilling position had significant effects on the total runoff after 27 min of runoff production, while the depth of tillage had no significant effect on the total runoff of 27 min after the beginning of runoff production, and the significant level of the effect on the total runoff was as follows: (1) the effect of tilling depth on the total amount of runoff was significant (P < 0.01), but the effect of tillage depth on the total amount of runoff was not significant (P 0.05). Slope tilling position tillage depth. 3) under 55 mm / h rain intensity, No matter which combination condition, the sediment concentration of runoff decreases first and then tends to steady gradually with the rainfall, and the sediment concentration of runoff increases with the increase of slope. The accumulative sediment amount obtained at 27 min after the beginning of runoff production increased with the middle, upper, lower and higher tillage depth, and the slope and tilling position significantly affected the accumulated sediment yield at 27 min after the beginning of runoff production. The significant level was P0.01N, the effect of tillage depth on the cumulative sediment yield was not significant, and the significant effect on the accumulated sediment yield was as follows: tilling depth of slope tilling position, tillage depth. 4) the benefit of soil and water conservation in the middle of the slope was obvious. In the middle part of the slope, there was a decrease of 31.6% and 40.5% and 53.3% in the middle part of the slope than in the lower part of the slope, while in the middle part of the slope it was lower than that in the lower part of the slope, while in the middle part of the slope it was lower than that in the lower part of the slope, and the yield of sand was decreased by 40.5% and 53.3%, compared with that in the middle part of the slope.
【學(xué)位授予單位】:山西農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2015
【分類號(hào)】:S157
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張嘉曄;郝仕龍;趙西寧;;寧南山區(qū)氣候變化與集水型生態(tài)農(nóng)業(yè)建設(shè)研究[J];華北水利水電學(xué)院學(xué)報(bào);2009年04期
2 沈渭?jí)?金燕,關(guān)有志,劉玉璋;陜—甘天然氣管道工程對(duì)環(huán)境的影響及防治對(duì)策[J];環(huán)境科學(xué)研究;1999年06期
3 丁晉利;鄭粉莉;;利用~7Be研究次降雨條件下淺溝集水區(qū)片蝕的空間分布[J];湖南師范大學(xué)自然科學(xué)學(xué)報(bào);2011年06期
4 葉海彤;王志榮;白世強(qiáng);;土壤侵蝕的環(huán)境磁學(xué)監(jiān)測(cè)方法[J];中國(guó)環(huán)境監(jiān)測(cè);2006年05期
5 ;Quantitative analysis of soil pores under natural vegetation successions on the Loess Plateau[J];Science China(Earth Sciences);2010年04期
6 許炯心;黃河中游多沙粗沙區(qū)的風(fēng)水兩相侵蝕產(chǎn)沙過程[J];中國(guó)科學(xué)(D輯:地球科學(xué));2000年05期
7 閆云霞;許炯心;;黃土高原地區(qū)侵蝕產(chǎn)沙的尺度效應(yīng)研究初探[J];中國(guó)科學(xué).D輯:地球科學(xué);2006年08期
8 朱元駿;邵明安;;黃土高原水蝕風(fēng)蝕交錯(cuò)帶小流域坡面表土礫石空間分布[J];中國(guó)科學(xué)(D輯:地球科學(xué));2008年03期
9 趙世偉;趙勇鋼;吳金水;;黃土高原植被演替下土壤孔隙的定量分析[J];中國(guó)科學(xué):地球科學(xué);2010年02期
10 岳大鵬;董美云;;鄉(xiāng)村聚落水蝕特征研究——以陜北3個(gè)典型鄉(xiāng)村為例[J];江西農(nóng)業(yè)大學(xué)學(xué)報(bào);2010年02期
相關(guān)博士學(xué)位論文 前10條
1 劉剛;淮河流域峒柏大別山區(qū)植被退化機(jī)制與生態(tài)修復(fù)模式[D];山東農(nóng)業(yè)大學(xué);2010年
2 劉剛;淮河流域桐柏大別山區(qū)植被退化機(jī)制與生態(tài)修復(fù)模式[D];山東農(nóng)業(yè)大學(xué);2010年
3 丁曉東;農(nóng)田養(yǎng)分流失風(fēng)險(xiǎn)評(píng)價(jià)及養(yǎng)分平衡管理研究[D];浙江大學(xué);2010年
4 程復(fù);黃土丘陵溝壑區(qū)生態(tài)恢復(fù)背景下土地利用變化對(duì)河川徑流泥沙影響研究[D];北京林業(yè)大學(xué);2011年
5 黎建強(qiáng);三峽庫區(qū)植物籬生態(tài)效益分析與評(píng)價(jià)[D];北京林業(yè)大學(xué);2011年
6 孟萬忠;歷史時(shí)期汾河中游河湖變遷研究[D];陜西師范大學(xué);2011年
7 湯秋香;洱海流域環(huán)境友好型種植模式及作用機(jī)理研究[D];中國(guó)農(nóng)業(yè)科學(xué)院;2011年
8 王景燕;川南坡地幾種退耕模式對(duì)土壤抗蝕性及有機(jī)質(zhì)組分的影響[D];四川農(nóng)業(yè)大學(xué);2011年
9 王華;植被護(hù)坡根系固土及坡面侵蝕機(jī)理研究[D];西南交通大學(xué);2010年
10 馬曉;基于GIS的黃河水土流失評(píng)價(jià)預(yù)測(cè)模型研究[D];解放軍信息工程大學(xué);2009年
,本文編號(hào):1552643
本文鏈接:http://sikaile.net/kejilunwen/nykj/1552643.html