紫色土區(qū)玉米季橫壟坡面細(xì)溝侵蝕過(guò)程研究
本文關(guān)鍵詞: 細(xì)溝侵蝕 橫坡壟作 玉米 葉面積指數(shù) 地表糙度 水動(dòng)力學(xué) 紫色土區(qū) 出處:《四川農(nóng)業(yè)大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
【摘要】:紫色土區(qū)細(xì)溝侵蝕作為坡耕地最嚴(yán)重的水蝕方式之一,嚴(yán)重阻礙著區(qū)域土壤可持續(xù)利用與農(nóng)業(yè)的可持續(xù)發(fā)展。由于細(xì)溝形態(tài)不斷演變,影響徑流的水動(dòng)力學(xué)特性,水流的動(dòng)態(tài)變化將引起細(xì)溝侵蝕的演化。因此,本文以紫色土丘陵區(qū)坡耕地為對(duì)象,采用野外人工模擬降雨,開(kāi)展不同雨強(qiáng)、坡度和生長(zhǎng)期條件下,橫壟坡面細(xì)溝侵蝕特征研究,揭示野外實(shí)地細(xì)溝形態(tài)演變及其主要影響因素,闡明玉米各生長(zhǎng)期細(xì)溝流水動(dòng)力學(xué)特性,建立細(xì)溝產(chǎn)流產(chǎn)沙與水動(dòng)力學(xué)參數(shù)的耦合關(guān)系,以期為紫色土區(qū)坡耕地水土流失的有效防控及區(qū)域水蝕測(cè)報(bào)模型構(gòu)建提供一定的理論依據(jù)。主要研究結(jié)果如下:(1)隨玉米生長(zhǎng)期推進(jìn),細(xì)溝出現(xiàn)時(shí)間總體呈先增加后減少的趨勢(shì)。橫壟坡面細(xì)溝侵蝕多發(fā)生在躍壟或破壟后,苗期、拔節(jié)期跌坎與細(xì)溝出現(xiàn)的平均間隔時(shí)間分別為10'59"和15'30",其細(xì)溝侵蝕發(fā)育過(guò)程為跌坎、斷續(xù)細(xì)溝(破壟)、細(xì)溝發(fā)育、細(xì)溝調(diào)整。2.0 mm min-1降雨條件下,苗期細(xì)溝發(fā)育長(zhǎng)、寬、深分別達(dá)77.62cm、6.25 cm和4.04 cm。苗期、拔節(jié)期、抽雄期及成熟期細(xì)溝形成對(duì)應(yīng)的平均降雨量分別為35.17 mm、48.91 mm、81.63 mm和65.82 mm,抽雄期、成熟期細(xì)溝侵蝕發(fā)育過(guò)程為濺蝕坑、濺蝕坑貫穿(越壟)、細(xì)溝發(fā)育、細(xì)溝調(diào)整。(2)玉米各生長(zhǎng)期,15°與20°間的細(xì)溝產(chǎn)沙量均無(wú)顯著差異。隨雨強(qiáng)的增加,橫壟坡面細(xì)溝產(chǎn)流量在各生長(zhǎng)期均呈增加的趨勢(shì)。隨玉米生長(zhǎng)期推進(jìn),橫壟坡面雨前地表糙度(R1)整體呈衰退趨勢(shì)。降雨后地表糙度最大變幅均出現(xiàn)在抽雄期,15°坡面,抽雄期的平均糙度變幅較苗期、拔節(jié)期和成熟期分別增加了2.63倍、1.74倍和3.21倍;20°坡面,抽雄期的平均糙度變幅較苗期、拔節(jié)期和成熟期分別增加了2.85倍、6.54倍和37.74倍。隨玉米生長(zhǎng)期的推進(jìn),葉面積指數(shù)、覆蓋度均呈先增加后下降的趨勢(shì),抽雄期葉面積指數(shù)為2.34。各因素與細(xì)溝產(chǎn)流的灰關(guān)聯(lián)度表現(xiàn)為雨強(qiáng)葉面積指數(shù)植被覆蓋度坡度雨前地表糙度株高,與產(chǎn)沙的灰關(guān)聯(lián)度表現(xiàn)為植被覆蓋度葉面積指數(shù)株高雨前地表糙度雨強(qiáng)坡度。(3)隨玉米生長(zhǎng)期推進(jìn),流速呈先減少后增加的趨勢(shì),平均徑流整體呈下降趨勢(shì),徑流剪切力、水流功率均呈先減小后增加的趨勢(shì)。細(xì)溝流流態(tài)主要分布于“緩過(guò)渡流”區(qū),抽雄期細(xì)溝流流態(tài)向“緩層流”區(qū)延伸,苗期和成熟期局部達(dá)到“緩紊流”區(qū)。抽雄期曼寧糙率系數(shù)n值較小,苗期相對(duì)較大。15°坡面,1.0mm min1降雨條件下,各生長(zhǎng)期細(xì)溝流流曼寧糙率系數(shù)n變化范圍為0.088~0.16, Darcy-Weisbach阻力系數(shù)f變化范圍為83.67-140.69。曼寧糙率系數(shù)n與Darcy-Weisbach阻力系數(shù)f變化趨勢(shì)基本一致。(4)玉米各生長(zhǎng)期,細(xì)溝產(chǎn)流率均與單位水流功率耦合度最高。苗期,產(chǎn)流率與單位水流功率呈二次函數(shù)關(guān)系。拔節(jié)期,產(chǎn)流率與單位水流功率呈冪函數(shù)關(guān)系。抽雄期、成熟期,產(chǎn)流率與單位水流功均呈對(duì)數(shù)函數(shù)正相關(guān)。苗期,產(chǎn)沙率與單位水流功率耦合度較高,呈二次函數(shù)。拔節(jié)期,產(chǎn)沙率與各水動(dòng)力學(xué)參數(shù)耦合度均較低。抽雄期、成熟期產(chǎn)沙率與單位能量耦合度較高,且均呈二次函數(shù)關(guān)系。玉米季橫壟坡面細(xì)溝產(chǎn)流模型由雨強(qiáng)、流速、葉面積指數(shù)構(gòu)成,產(chǎn)沙模型由流速、傅汝德數(shù)、Darcy-Weisbach阻力系數(shù)f構(gòu)成。
[Abstract]:As one of the most serious erosion of slope farmland in purple soil area of rill erosion mode, sustainable development seriously hindered the sustainable utilization of soil and agricultural area. Due to the continuous evolution of rill morphology, the influence of water dynamics of runoff, the dynamic change of water flow will cause the evolution of rill erosion. Therefore, in the hilly area of purple soil slope land in this paper as the object and the field of artificial rainfall simulation in different rainfall intensity, slope and growth conditions, characteristics of rill erosion Cross Ridge, to reveal the factors of field rill evolution and its main influence, clarify the growth period of maize rill flow dynamics, relationship between rill runoff and sediment and hydrodynamic parameters, in order to provide the construction of a theoretical basis for effective prevention and control of soil erosion and water erosion area of purple soil slope land forecasting model. The main results are as follows: (1) With the corn growth stage to promote the emergence time of rill showed a decreasing trend after the first increase. The transverse ridge slope rill erosion occurred in the long jump or broken ridge, seedling stage, jointing stage or average interval ridge were 10'59 and rill appeared "and 15'30", the rill erosion development process is the sill. Intermittent rill (broken ridge), rill rill, adjust the.2.0 mm min-1 under the condition of rainfall, seedling development of rill long, wide, deep were 77.62cm, 6.25 cm and 4.04 cm. at the seedling stage, jointing stage, heading stage and mature stage of rill formation corresponds to the average rainfall were 35.17 mm, 48.91 mm, 81.63 and mm 65.82 mm, tasseling stage, mature stage of rill erosion development process of sputtering pit, sputtering pit through (the ridge), the rill, rill adjustment. (2) the growth period of maize, there was no significant difference in rill sediment between 15 DEG and 20 DEG. With the increase of rainfall intensity, cross the ridge of rill runoff in the The long-term increased. With the corn growth stage to promote cross ridge slope before surface roughness (R1) showed an overall declining trend. After the rainfall surface roughness maximum appeared at tasseling stage, 15 degree slope, tasseling the average roughness amplitude than the seedling stage, jointing stage and mature stage respectively. 2.63 times, 1.74 times and 3.21 times; 20 degree slope, tasseling and average roughness amplitude than the seedling stage, jointing stage and mature stage were increased by 2.85 times, 6.54 times and 37.74 times. With the corn growth period development, leaf area index, coverage showed a downward trend after the first increase. Extraction of leaf area index for 2.34. male factors and grey correlation degree for the performance of the rill runoff rainfall leaf area index of vegetation slope before surface roughness height, and grey correlation degree of sediment yield for the vegetation coverage and leaf area index were high surface roughness before rain rain intensity gradient (3. With the corn growth period) Advance velocity is decreased and then increased trend, the average runoff decreased, runoff shear stress, water power was first decreased and then increased. Rill flow pattern is mainly distributed in the "slow transition flow", tasseling rill flow pattern to "slow laminar" extension, seedling and mature stage the "slow turbulence". Tasseling Manning roughness coefficient n value is smaller, relatively large seedling.15 degree slope, 1.0mm Min1 under the condition of rainfall, the growth period of rill flow Manning's roughness coefficient n ranged from 0.088 to 0.16, the drag coefficient Darcy-Weisbach. The range of F 83.67-140.69. N and the Manning roughness coefficient the drag coefficient Darcy-Weisbach f the trend is basically the same. (4) the growth period of maize, rill runoff rate and unit stream power coupling is the highest. At seedling stage, a quadratic function relationship between runoff rate and unit stream power. At jointing stage, runoff rate and single There is a power function relationship between bit stream power. The tasseling stage, mature stage, the logarithm function is related with unit stream power production flow. At the seedling stage. The sediment yield and unit stream power high coupling degree, a quadratic function. The jointing stage, the sediment yield and the hydrodynamic parameters coupling degree are low. Pump male period, mature period of sediment rate and unit energy high coupling degree, and showed a quadratic function relationship. The maize season Cross Ridge rill runoff model by rainfall intensity, flow rate, leaf area index, sediment model by velocity and Fu Rude number, the drag coefficient Darcy-Weisbach f.
【學(xué)位授予單位】:四川農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:S157.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 鄭粉莉;;細(xì)溝侵蝕量測(cè)算方法的探討[J];水土保持通報(bào);1989年04期
2 肖培青,鄭粉莉,張成娥;細(xì)溝侵蝕過(guò)程與細(xì)溝水流水力學(xué)參數(shù)的關(guān)系研究[J];水土保持學(xué)報(bào);2001年01期
3 白清俊,馬樹(shù)升;細(xì)溝侵蝕過(guò)程中水流跌坑的發(fā)生機(jī)理探討[J];水土保持學(xué)報(bào);2001年S2期
4 張晴雯,雷廷武,潘英華,夏衛(wèi)生,劉紀(jì)根;細(xì)溝侵蝕動(dòng)力過(guò)程極限溝長(zhǎng)試驗(yàn)研究[J];農(nóng)業(yè)工程學(xué)報(bào);2002年02期
5 李勉,李占斌,丁文峰;中子活化分析方法在細(xì)溝侵蝕過(guò)程研究中的應(yīng)用[J];核技術(shù);2003年06期
6 蔡強(qiáng)國(guó),朱遠(yuǎn)達(dá),王石英;幾種土壤的細(xì)溝侵蝕過(guò)程及其影響因素[J];水科學(xué)進(jìn)展;2004年01期
7 雷廷武,姚春梅,張晴雯,Mark Nearing,邵明安,梅樹(shù)立;細(xì)溝侵蝕動(dòng)態(tài)過(guò)程模擬數(shù)學(xué)模型和有限元計(jì)算方法[J];農(nóng)業(yè)工程學(xué)報(bào);2004年04期
8 楊具瑞,曹叔尤,劉興年,方鐸;黃土坡面細(xì)溝侵蝕穩(wěn)定寬度的動(dòng)力學(xué)研究[J];昆明理工大學(xué)學(xué)報(bào)(理工版);2004年04期
9 姚春梅,雷廷武,張晴雯,Mark Nearing,邵明安;細(xì)溝侵蝕動(dòng)態(tài)過(guò)程模擬室內(nèi)試驗(yàn)和模型驗(yàn)證研究[J];農(nóng)業(yè)工程學(xué)報(bào);2004年05期
10 陳力;劉青泉;李家春;;坡面細(xì)溝侵蝕的沖刷試驗(yàn)研究[J];水動(dòng)力學(xué)研究與進(jìn)展(A輯);2005年06期
相關(guān)會(huì)議論文 前2條
1 李妍敏;安翼;劉青泉;;細(xì)溝侵蝕中陡坎發(fā)育過(guò)程的數(shù)值研究[A];中國(guó)力學(xué)大會(huì)——2013論文摘要集[C];2013年
2 王tD;尚佰曉;李占斌;王莉;;利用REE示蹤法研究細(xì)溝侵蝕的演變過(guò)程[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國(guó)科協(xié)年會(huì)論文集(三)[C];2007年
相關(guān)博士學(xué)位論文 前4條
1 白清俊;黃土坡面細(xì)溝侵蝕帶產(chǎn)流產(chǎn)沙模型研究[D];西北農(nóng)林科技大學(xué);1999年
2 張風(fēng)寶;~7Be沉降在地表分配規(guī)律及在示蹤坡面侵蝕過(guò)程中的應(yīng)用研究[D];西北農(nóng)林科技大學(xué);2008年
3 張新和;黃土坡面片蝕—細(xì)溝侵蝕—切溝侵蝕演變與侵蝕產(chǎn)沙過(guò)程研究[D];西北農(nóng)林科技大學(xué);2007年
4 宋朋燃;黃土邊坡沖刷破壞特征及數(shù)值模擬[D];吉林大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 趙宇;黃土細(xì)溝侵蝕過(guò)程沖刷試驗(yàn)研究[D];西南大學(xué);2015年
2 米宏星;黃土細(xì)溝侵蝕徑流水動(dòng)力學(xué)特性研究[D];西南大學(xué);2015年
3 李軍鵬;基于正交設(shè)計(jì)的細(xì)溝侵蝕室內(nèi)模擬試驗(yàn)研究[D];蘭州大學(xué);2016年
4 李陶陶;降雨過(guò)程中地表糙度與細(xì)溝侵蝕的關(guān)系研究[D];西北農(nóng)林科技大學(xué);2016年
5 羅幫林;紫色土細(xì)溝侵蝕水動(dòng)力學(xué)特征及與黃綿土對(duì)比研究[D];西南大學(xué);2016年
6 王鵬飛;紫色土區(qū)玉米季橫壟坡面細(xì)溝侵蝕過(guò)程研究[D];四川農(nóng)業(yè)大學(xué);2016年
7 張永東;不同地表細(xì)溝侵蝕演化過(guò)程及其水流水力學(xué)特性研究[D];西北農(nóng)林科技大學(xué);2013年
8 譚貞學(xué);黃土坡面細(xì)溝侵蝕動(dòng)力學(xué)過(guò)程組合小區(qū)模擬試驗(yàn)研究[D];中國(guó)科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2009年
9 霍云云;基于元胞自動(dòng)機(jī)的坡面細(xì)溝侵蝕過(guò)程模擬[D];西北農(nóng)林科技大學(xué);2011年
10 劉俊體;黃土坡面細(xì)溝侵蝕過(guò)程試驗(yàn)研究[D];北京林業(yè)大學(xué);2013年
,本文編號(hào):1472699
本文鏈接:http://sikaile.net/kejilunwen/nykj/1472699.html