北方溫帶森林不同海拔梯度土壤有機(jī)質(zhì)分解酶活性及動(dòng)力學(xué)特征研究
本文關(guān)鍵詞:北方溫帶森林不同海拔梯度土壤有機(jī)質(zhì)分解酶活性及動(dòng)力學(xué)特征研究 出處:《沈陽(yáng)農(nóng)業(yè)大學(xué)》2016年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 溫帶森林 土壤酶 酶動(dòng)力學(xué) 碳礦化 溫度敏感性
【摘要】:本文以老禿頂南坡沿海拔梯度(500-1306 m)不同植被類型下的土壤為研究對(duì)象,旨在通過(guò)對(duì)不同海拔梯度的土壤酶活性、土壤碳礦化速率、土壤酶動(dòng)力學(xué)參數(shù)及溫度敏感性的研究,并利用相關(guān)分析、冗余分析及主成分分析等數(shù)學(xué)分析方法研究了其與土壤理化性質(zhì)的關(guān)系。探究影響不同海拔梯度土壤酶變化的關(guān)鍵因子以及不同海拔梯度土壤酶對(duì)溫度升高的響應(yīng),揭示未來(lái)氣候變暖對(duì)不同海拔梯度土壤有機(jī)質(zhì)分解的影響,得到如下結(jié)論:(1)土壤微生物產(chǎn)生的胞外酶可以降解土壤有機(jī)質(zhì)高分子物質(zhì)。本研究以北方溫帶森林老禿頂7個(gè)不同海拔梯度的土壤為研究對(duì)象,研究不同海拔梯度下土壤水解酶和氧化還原酶活性分布特征以及主要驅(qū)動(dòng)因素。研究結(jié)果表明:除N-乙酰-β-氨基葡萄糖苷酶(NAG)之外,α-萄糖苷酶(αG)、p-葡萄糖苷酶(pG)、纖維二糖水解酶(CHB)和木糖苷酶(pX)4種水解酶活性總體上隨著海拔的升高而增加,而土壤氧化還原酶活性并沒(méi)有表現(xiàn)出隨海拔梯度變化的規(guī)律。5種水解酶活性與有機(jī)碳(SOC)和顆粒有機(jī)碳(POC)含量呈顯著正相關(guān)(p0.05),與可溶性有機(jī)碳(DOC)含量呈極顯著正相關(guān)(p0.01);除NAG以外,其它4種水解酶都與含水量(SWC)、全氮(TN)含量呈極顯著正相關(guān);土壤過(guò)氧化物酶(PER)活性與SOC、TN和SWC含量呈極顯著正相關(guān),與POC顯著正相關(guān);多酚氧化酶(PPO)只與土壤pH顯著正相關(guān)。這表明土壤水解酶活性與土壤有機(jī)質(zhì)的含量密切相關(guān)。(2)酶動(dòng)力學(xué)可以完整的描述酶催化反應(yīng)進(jìn)程,酶動(dòng)力學(xué)參數(shù)溫度敏感性可以反映其對(duì)溫度變化及未來(lái)氣候變暖情況下的響應(yīng)。本研究選擇北方溫帶森林老禿頂南坡3個(gè)不同海拔梯度,即1233 m(岳樺林)、1060 m(針闊混交林)、825 m(紅松林)森林土壤,進(jìn)行室內(nèi)不同溫度梯度培養(yǎng)試驗(yàn),研究土壤碳礦化速率和土壤pG動(dòng)力學(xué)參數(shù)及溫度敏感性。結(jié)果表明:溫度升高加快了不同海拔梯度土壤碳礦化速率(Cmin),且1233 m(岳樺林)處Cmin最高,海拔梯度和溫度對(duì)Cmin均有顯著影響(p0.001)碳礦化速率溫度敏感性CQ1O (Cmin))為1233 m(岳樺林)825 m(紅松林)1060 m(針闊混交林),但差異不顯著(p0.05)。土壤βG動(dòng)力學(xué)參數(shù)最大反應(yīng)速率(Vmax)和米氏常數(shù)(Km)均隨著培養(yǎng)溫度的升高而增加,Vmax的溫度敏感性(Q10(Vmax))變化范圍為1.78-1.90;Km的溫度敏感性(Q10(Km))變化范圍為1.79-2.0。1233 m(岳樺林)處Q10(Vmax)/Q10(Km)最高,顯著高于825 m(紅松林)和1060 m(針闊混交林),意味著高海拔岳樺林土壤有機(jī)質(zhì)碳分解受溫度升高影響最大。
[Abstract]:In this paper, the soil from 500-1306 m) on the south slope of old balding was studied under different vegetation types. The purpose of this study was to study the soil carbon mineralization rate through the soil enzyme activity of different elevation gradients. The kinetic parameters and temperature sensitivity of soil enzyme were studied, and the correlation analysis was used. The relationship between soil physical and chemical properties and soil physical and chemical properties was studied by means of redundancy analysis and principal component analysis. The key factors affecting soil enzyme changes at different elevations and the response of soil enzymes at different elevations to temperature rise were explored. Should. The effects of future climate warming on the decomposition of soil organic matter at different altitude gradient were revealed. Conclusion: (1) extracellular enzymes produced by soil microbes can degrade soil organic matter macromolecules. In this study, 7 soils with different elevation gradients in temperate forest in North China were studied. The distribution characteristics and main driving factors of soil hydrolase and redox enzyme activities at different elevation gradients were studied. The results showed that: except for N-acetyl- 尾 -glucosaminidase (NAG). The activities of 偽 -glucosidase (偽 -glucosidase) (偽 -glucosidase), cellulose hydrolase (CHB) and xylosidase (PX) increased with the increase of altitude. However, the activity of soil oxidoreductase did not show a significant positive correlation with the content of organic carbon (SOC) and particulate organic carbon (POC). There was a significant positive correlation with the content of soluble organic carbon (DOC). With the exception of NAG, the other four hydrolases were positively correlated with the contents of water content and total nitrogen. The activity of soil peroxidase peroxidase (per) was positively correlated with the contents of TN and SWC, and with POC. PPO was only positively correlated with soil pH, which indicated that soil hydrolase activity was closely related to the content of soil organic matter. The temperature sensitivity of enzyme kinetic parameters can reflect its response to temperature change and future climate warming. In this study, three different elevation gradients were selected for the southern slope of the old balding forest in the northern temperate zone. That is 1233m (Yuehuan forest) 1060m (coniferous and broad-leaved mixed forest) forest soil (Pinus koraiensis forest), the indoor temperature gradient culture experiment was carried out. The soil carbon mineralization rate, soil PG kinetic parameters and temperature sensitivity were studied. The results showed that the increase of temperature accelerated the soil carbon mineralization rate at different elevations. The Cmin was the highest at 1233m (birch forest). Elevation gradient and temperature had significant effects on Cmin (p0.001). The temperature sensitivity of CQ1O was 1233m (Pinus koraiensis forest) (Pinus koraiensis forest). 1060m (coniferous and broad-leaved mixed forest). But the difference was not significant (p0.05). The maximum reaction rate (Vmax.) and the Michlet constant (Km) of soil 尾 -G kinetic parameters increased with the increase of culture temperature. The temperature sensitivity of Vmax was 1.78-1.90. The range of temperature sensitivity of km is 1.79-2.0.1233 m (birch forest). Significantly higher than 825m (Pinus koraiensis) and 1060m (coniferous and broad-leaved mixed forest) means that soil organic matter carbon decomposition in high altitude birch forest is most affected by temperature rise.
【學(xué)位授予單位】:沈陽(yáng)農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2016
【分類號(hào)】:S714
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 萬(wàn)佳蓉;聶明;鄒芹;胡少昌;陳家寬;;土壤重金屬沿山地森林海拔梯度的分布特征[J];光譜學(xué)與光譜分析;2011年12期
2 宋璐璐;樊江文;吳紹洪;;植物葉片性狀沿海拔梯度變化研究進(jìn)展[J];地理科學(xué)進(jìn)展;2011年11期
3 王志峰;胥曉;李霄峰;楊鵬;袁新利;;青楊雌雄群體沿海拔梯度的分布特征[J];生態(tài)學(xué)報(bào);2011年23期
4 羅璐;申國(guó)珍;謝宗強(qiáng);喻杰;;神農(nóng)架海拔梯度上4種典型森林的喬木葉片功能性狀特征[J];生態(tài)學(xué)報(bào);2011年21期
5 淮虎銀,周立華;青海湖湖盆南部的植被與海拔梯度[J];西北植物學(xué)報(bào);1997年04期
6 王長(zhǎng)庭,龍瑞軍,丁路明;高寒草甸不同海拔梯度下多年生黃帚橐吾的克隆生長(zhǎng)特征[J];西北植物學(xué)報(bào);2004年10期
7 胡玉昆;李凱輝;阿德力·麥地;柳妍妍;范永剛;王鑫;高國(guó)剛;;天山南坡高寒草地海拔梯度上的植物多樣性變化格局[J];生態(tài)學(xué)雜志;2007年02期
8 王桔紅;張勇;崔現(xiàn)亮;杜國(guó)禎;;不同海拔梯度糙皮樺和紫果云杉種子的萌發(fā)變異[J];生態(tài)學(xué)雜志;2009年04期
9 潘紅麗;李邁和;蔡小虎;吳杰;杜忠;劉興良;;海拔梯度上的植物生長(zhǎng)與生理生態(tài)特性[J];生態(tài)環(huán)境學(xué)報(bào);2009年02期
10 彭劍峰;勾曉華;陳發(fā)虎;方克艷;張芬;;坡向?qū)0翁荻壬掀钸B圓柏樹(shù)木生長(zhǎng)的影響[J];植物生態(tài)學(xué)報(bào);2010年05期
相關(guān)會(huì)議論文 前5條
1 張宇軍;房麗君;;蝴蝶多樣性沿海拔梯度變化研究[A];中國(guó)植物園(第十四期)[C];2011年
2 陳立同;馬飛;張曉瑋;趙長(zhǎng)明;;西藏急尖長(zhǎng)苞冷杉與川滇高山櫟葉片δ~(13)C和LMA沿海拔梯度變化趨勢(shì)[A];中國(guó)植物學(xué)會(huì)七十五周年年會(huì)論文摘要匯編(1933-2008)[C];2008年
3 張石寶;胡虹;周浙昆;許琨;;帽斗櫟光合作用及相關(guān)葉性狀沿海拔梯度的變化(英文)[A];中國(guó)植物學(xué)會(huì)七十五周年年會(huì)論文摘要匯編(1933-2008)[C];2008年
4 高信芬;;墨脫南迦巴瓦峰生物多樣性垂直梯度變化的初步研究[A];中國(guó)青藏高原研究會(huì)2006學(xué)術(shù)年會(huì)論文摘要匯編[C];2006年
5 顏O,
本文編號(hào):1418687
本文鏈接:http://sikaile.net/kejilunwen/nykj/1418687.html