天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 科技論文 > 機(jī)械論文 >

旋轉(zhuǎn)機(jī)械設(shè)備關(guān)鍵部件故障診斷與預(yù)測(cè)方法研究

發(fā)布時(shí)間:2016-10-05 17:54

  本文關(guān)鍵詞:旋轉(zhuǎn)機(jī)械設(shè)備關(guān)鍵部件故障診斷與預(yù)測(cè)方法研究,由筆耕文化傳播整理發(fā)布。


CHAP‘IER5AGENERICSUPPORT;min要11w112+c寶(專+六+),_f2l;IJ,,一W?工,一b≤占+六(5.8);sj.\w?Xi+b—yl§s+考:.;【缶,缶+≥0;InEq.(5.8),卣and繭+denote;errorstheslackvariable,C;follow:largerthan±£;l孝I;Fig?5?4(

CHAP‘IER5AGENERICSUPPORTVECTORREGRESSIVECLASSIFIER

min要11w112+c寶(專+六+),_f2l

IJ,,一W?工,一b≤占+六(5.8)

sj.\w?Xi+b—yl§s+考:.

【缶,缶+≥0

InEq.(5.8),卣and繭+denote

errorstheslackvariable,Cisusings—insensitiveapositiveconstantwhichlossfunctiongivenaSpenalizesthe

follow:largerthan±£

l孝I。={苫Jif—s,!海簦妫瑁桑澹迹颍髡迹椋螅澹

Fig?5?4(a)shows

5.4(b)showsthe占一insensitivelossfunction.(5.9)theregressionline,theupperandlowerboundarylines.Fig.

Fig?5.4TheregressionlineofSVRisshownin(a)andthelossfunctionofSVRisshownin(b).

Tosolvetheoptimizationproblemprovidedby

equationisrequiredtobeconstructed:Eq.(5.8),thefollowingLagrange

上=吾nol,2+喜c(專嘲一喜(仍戔+礦占)

一,(5.10)!崎c口,LS+毒一y+W■+6、,一●

!颇_口I,LF十占+M—W一一6、J

whereQl,Z,,ql,戎areLagrangemultiplierswhichhavetosatisfythefollowingconstraints:

口,,Ofi+,r/i,叩≥0,

65(5.11)

CHAPTER5AGENERICSUPPORTVECToRREGRESSIVECLASSIFIERThepartialderivativesoftheLagrangeequationLwithrespecttotheprimalvariables(co,b,毒,等)havetovanishforoptimality:

a6。∑商/L一%、JO

0co=∞一∑(%一西ki=1

I’0(5.12)q1:o要:c8{;

詈一ct徊

Bysubstituting

asEq.(5.12)intoEq.(5.10),thedualoptimizationproblemisgivenfollow:

maX一曇窆(%一口頂哆一巧)(一

‘i,j=l

●●0、J一占!疲龋蹋瘢冢埽剩!脾螅炭谝唬铮悖欤,(5.13)

S!乒,L口一口、J0and%,口^[o,C】

ByexploitingKarush.Kuhn-Tucker(KKT)conditions(Smolaetal?2004),the

thefollowingformula:computationofbisdoneby

一w

w一S6lI"M一t薯+Sf弦or≥囂三,

regression@均functionisThen.by

presentedaslinearsolvingtheoptimizationproblem,afollows:

廠(功=∑(%一Z)(薯,曲+6,

I-l(5.15)

Thelinearregressionfunctionisnotsufficient

toenoughtoprocessthenon-linearvectorintoahigh

aSproblem.Thekernelfunctionisappliedheremaptheinputdimensionalfeaturespaceandthustheregressivefunctionisderivedfollow:

廠@)=∑(%一西)K(一,x)+6,(5.16)

i=1

whereK(薯,x)=烈t)?p(x)is

SVM,theasymmetricpositivedefinedkernelfunctiongivenbytheMercer’Stheorem[146].Similartothe

thiswork.RBFkernelfunctionwritteninEq.(5.6)isadoptedin

5.3Proposedhealthstatusidentificationscheme

Fig?5.5TheframeworkoftheproposedintelligentmachinefaultdiagnosisschemeTheproposednCWintelligentmachinefaultdiagnosisschemesteps:faultfeatureextraction,sensitivefaultfeatureselectionandrecognition.Eachstepincludesthreefaultpatternindetailsisillustratedinthefollowingsubsections.TheframeworkoftheproposedschemeisdepictedinFig5.5.

5.3.1Faultfeatureextraction

Thevibrationsignalscollectedbyaccelerometers

packetarefirstprocessedbyawavelettransformatdifferentdecompositiondepthstoenhancethesignal..to..noiseratio.ThewaveletpacketcoefficientsatdifferentdecompositiondepthsarereferredtoastheWPTpaving.Thepavingofwaveletpacketsatamaximumdepthof3isplottedinFig.5.6.67

NodeNode

(1,0)(1,1)

NodeNodeNOdeNode

(2,0)(2,1)(2,2)(2,3)

NodeNodeNOdeNodeNodeNodeNodeNode

(3,0)(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)(3,7)

Fig.5.6TIlepavingofwaveletpacketsatthemaximumdepthof3

A11waveletpacketcoefficientsatdifferentdepthsareconsideredbecauseitIS

todeclaredefinitivelythatthoseatacertaindeptharebetterthanthoseat

another.Thetypicalexampleisthekurtosisofwaveletpacketcoefficientpaving,

Leieta1.[147]referredtoasanimprovedkurtogram.Theirresultsshowedthatmaximumkurtosisofthecoefficientsofwaveletpacketscouldbeobtainedatdifferentdepths.Hence,itismorereasonabletoextractthefaultfeaturesfromthe

ofwaveletpackets(thewaveletpacketcoefficientsatdifferentdepths).The

ninestatisticalparameterslistedinTable5.1areextractedfromthepavingofwaveletpacketsatdifferentdecompositiondepths.Ingeneral,themaximumwaveletpacketdecompositionlevelof3iseffectiveforfeaturesextractionpurpose[104,105].Asaresult,afeaturesetcontaining126featuresforeachsampleisobtained.

Table5.1Theninestatisticalfeatureparameters.

K…i8:專∑#,』Vl=t:ssenwekS!疲椋剑欤,』T

Crestfactor:max(I—1)

√專釅斤—廣’Cle一鼬r:爵max(而Ix,1),

Shapefactor:√專善#max(I五1)Impulseindicator:

●一ⅣⅣ∑斟●一ⅣⅣ∑Ⅲ

Ⅷ一:專缸squareroot蛐pltmaeVa?u“專喜佩)2,舳烈—…刪ituaeva?ue:專磐1.difficultwhichthepaving

CHAPTER5AGENERICSUPPORTVECToRREGRESSIVECLASSIFIER

5.3.2Faultfeatureselection

Theninestatisticalfaultfeaturesbasedonwaveletpacketcoeffieientshavetheirownparticularmeaningsindescribingthedifferentaspectsofamachine’Shealthstatus.Thewaveletpacketsatamaximumdepthof3produce126faultfeatures.Itshouldbenotedthatthepacketshavedifferemsensitivitycontributionsforclassification[103].Inotherwords,toomanyinputparametersforaclassifiercangreatlydecreaseitsidentificationaccuracyandgreatlyincreasethecomputationalburden.Hence,itisnecessarytocarryoutsensitivefaultfeatureselection.Sensitivefaultfeaturesusuallyexhibitasmalldegreeofvarianceforsamplesbelongingtothesameclassandarelativelylargedegreeforthosebelongingtodifferentclasses.OneofthemosteffectivemethodsformeasuringthedifferentsensitivitiesofthesefeaturesistheDET,andtheproceduresofthismethodarepresentedasfollow.

Assumefeatureparameterset{厶,c’,,m=1,2,...,必;c=1,2,...,C;j=1,2….,J},wherefm,。,』isdenotedasthejthfeatureparameterinthecaseofthemthsamplecollectedunderthe礎(chǔ)condition.Here,尥,CandJarethemaximumnumberofsamplesunderthecthcondition,themaximumnumberofconditionsa11dt11emaximumnumberofstatisticsforeachsample,respectively.Obviously,thereareMcxCxJfaultfeatureparametersina11.ThefeatureselectionprocedureproceedsinthefollowingsteDs.

Stepl?Calculatetheaveragedistancedc,Jofthesamecondition

而1×隧k,吒,1]一嘶∽samplesby

Step2.CalculatetheaveragedistanceofCconditionsby:

1c

∥=I,X∑吃,(5.18)LC=I

Step3.Calculateaveragedistancebetweendifferentconditionsby:

巧∞=云≮i甚二面xC;J”。,,一心,,『],c≠P,(5.?9)

where

%,=瓦1×弘∥‰=擊x弘,@2。,

Step4.CalculatetheratioAitoevaluatethejthfeatureby69

 

 

下載地址:旋轉(zhuǎn)機(jī)械設(shè)備關(guān)鍵部件故障診斷與預(yù)測(cè)方法研究_圖文23.Doc

  【】

最新搜索

旋轉(zhuǎn)機(jī)械設(shè)備關(guān)鍵部件故障診斷與預(yù)測(cè)方法研究_圖文

2010陜西省會(huì)計(jì)證(必備資料)

SQL Server 重復(fù)執(zhí)行作業(yè)中某個(gè)步驟

可控

《方程的意義》教學(xué)設(shè)計(jì) 黃愛華

廣醫(yī)附二

2016年企業(yè)法律顧問備考技巧之方法篇每日一練(4月11日)

安全生產(chǎn)管理人員安全資格準(zhǔn)入制度

1SMA4V3中文資料

毛體書法


  本文關(guān)鍵詞:旋轉(zhuǎn)機(jī)械設(shè)備關(guān)鍵部件故障診斷與預(yù)測(cè)方法研究,由筆耕文化傳播整理發(fā)布。



本文編號(hào):131283

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jixiegongcheng/131283.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e9c17***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com