非絕熱和樂量子計(jì)算NHQC+方案的解析解以及在超導(dǎo)量子比特中的應(yīng)用
發(fā)布時(shí)間:2022-12-09 05:48
量子計(jì)算是基于量子力學(xué)特性,也就是利用了量子態(tài)的疊加和糾纏性質(zhì)的一種新型計(jì)算手段,其能調(diào)控量子信息單元進(jìn)行計(jì)算,是當(dāng)前世界科技前沿的研究熱點(diǎn)之一。量子計(jì)算的優(yōu)越性主要體現(xiàn)在信息表示,存儲(chǔ)與處理能力上,這是由于量子態(tài)的疊加性使得其初態(tài)可以制備在Bloch球面上的任意一點(diǎn),相比于經(jīng)典比特只能處在0和1,即只能處于Bloch球面上兩個(gè)頂點(diǎn)處,量子態(tài)初態(tài)可包含更為豐富的信息;糾纏性則使得量子態(tài)所處的態(tài)空間(希爾伯特空間)隨比特?cái)?shù)增長(zhǎng)而指數(shù)增長(zhǎng),極大地提高了計(jì)算的并行能力。因此與傳統(tǒng)的經(jīng)典計(jì)算相比較,量子計(jì)算能更有效地解決一些經(jīng)典計(jì)算機(jī)花費(fèi)巨大時(shí)間或能耗才能解決的問(wèn)題,有前者無(wú)可比擬的本質(zhì)上的優(yōu)勢(shì)。但是量子計(jì)算機(jī)也面臨著巨大的挑戰(zhàn):一方面,量子計(jì)算需要量子系統(tǒng)的相干性為基礎(chǔ),但目前的實(shí)驗(yàn)體系對(duì)環(huán)境的封閉效果仍不夠好,不可避免地會(huì)導(dǎo)致量子系統(tǒng)的退相干;另一方面,量子態(tài)從制備到測(cè)量過(guò)程中會(huì)引入一系列錯(cuò)誤,包括由于測(cè)量?jī)x器精確度不足在探測(cè)信號(hào)中引入的噪聲以及系統(tǒng)誤差等。因此,想要真正實(shí)現(xiàn)大規(guī)模量子計(jì)算,需要一系列能夠在量子比特體系上實(shí)現(xiàn)任意幺正變換的量子門,而這些完備的量子門組合要同時(shí)具有高保真度,時(shí)...
【文章頁(yè)數(shù)】:65 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 The Background and Significance
1.2 Literature Review and Analysis for the Holonomic Quantum Computation
1.2.1 Background
1.2.2 Geometric Quantum Computation
1.2.3 Non-adiabatic Holonomic Quantum Computation
1.3 The Advantages and Development for Superconducting Qubits
1.4 Main Research Contents of Research
1.5 Summary
Chapter 2 Analytic Solution of Non-adiabatic Holonomic Quantum Computation on Superconducting Qubits
2.1 Background
2.1.1 An Optimal Scheme of Non-adiabatic Holonomic Quantum Computation
2.1.2 Analytically Solvable Two-level Quantum Systems Model
2.2 Universal Single-qubit Gates with Analytic Solution
2.2.1 Hamiltonian
2.2.2 The Analytical Solutions for the Hamiltonian
2.2.3 General Unitary for Holonomic Gates
2.3 Quantum Gates performance on a Superconducting Qubit
2.3.1 Experimental Hamiltonian on a Superconducting Qubit
2.3.2 State Populations and Fidelity on a Superconducting Qubit
2.3.3 Randomize Benchmarking
2.4 Non-trivial Two-qubit Gates
2.5 Summary
Chapter 3 Robustness against Noises
3.1 Background
3.2 The Principle of Robustness against Noises
3.3 Robustness against Environment induced Fluctuation
3.4 Summary
Conclusions
結(jié)論
References
Acknowledgements
本文編號(hào):3714953
【文章頁(yè)數(shù)】:65 頁(yè)
【學(xué)位級(jí)別】:碩士
【文章目錄】:
摘要
Abstract
Chapter 1 Introduction
1.1 The Background and Significance
1.2 Literature Review and Analysis for the Holonomic Quantum Computation
1.2.1 Background
1.2.2 Geometric Quantum Computation
1.2.3 Non-adiabatic Holonomic Quantum Computation
1.3 The Advantages and Development for Superconducting Qubits
1.4 Main Research Contents of Research
1.5 Summary
Chapter 2 Analytic Solution of Non-adiabatic Holonomic Quantum Computation on Superconducting Qubits
2.1 Background
2.1.1 An Optimal Scheme of Non-adiabatic Holonomic Quantum Computation
2.1.2 Analytically Solvable Two-level Quantum Systems Model
2.2 Universal Single-qubit Gates with Analytic Solution
2.2.1 Hamiltonian
2.2.2 The Analytical Solutions for the Hamiltonian
2.2.3 General Unitary for Holonomic Gates
2.3 Quantum Gates performance on a Superconducting Qubit
2.3.1 Experimental Hamiltonian on a Superconducting Qubit
2.3.2 State Populations and Fidelity on a Superconducting Qubit
2.3.3 Randomize Benchmarking
2.4 Non-trivial Two-qubit Gates
2.5 Summary
Chapter 3 Robustness against Noises
3.1 Background
3.2 The Principle of Robustness against Noises
3.3 Robustness against Environment induced Fluctuation
3.4 Summary
Conclusions
結(jié)論
References
Acknowledgements
本文編號(hào):3714953
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/3714953.html
最近更新
教材專著