井下作業(yè)數(shù)據(jù)中心數(shù)據(jù)質(zhì)量全程監(jiān)控模型研究
[Abstract]:To a large extent, petroleum enterprises are knowledge-intensive enterprises. As one of the important assets of enterprises, data must be of high quality. Only high-quality data can be used in enterprise production, management decisions and scientific research. Garbage data is of no value to the enterprise. How to improve and guarantee the data quality of enterprises has always been a hot issue in international and domestic research. Improving the data quality of enterprises is not only a technical problem to be solved, but also especially important in the management level. Therefore, only from the two aspects of technology and management at the same time, we can fundamentally solve the problem of data quality. First of all, according to the requirement of data quality management in the data center of downhole operation in oil field, this paper studies the constraint rules of data quality in the data center of downhole operation from the technical level, and defines thirteen kinds of constraint rules of data quality. According to these constraint rules, metadata technology is used to define the data items in the data center of underground operation. Then, in order to evaluate the data quality of the data center, seven kinds of data quality evaluation indexes are defined, and the metadata model used to describe and store these evaluation indexes is established by using metadata technology. Secondly, from the management level, this paper analyzes and studies the links from data collection, data audit to quality assessment, and constructs the process of monitoring data quality and related metadata model. To realize the management and monitoring of data quality from the management level. Then, a data quality monitoring architecture model is constructed. The architecture includes data layer, metadata layer, quality monitoring layer and presentation layer, each layer defines its own detailed functions. The data quality monitoring is distributed into three stages of data processing through the architecture model, in which the data quality constraint rules are used to supervise the data. In the audit stage, the data is audited, and the abnormal data is detected according to the numerical data, which improves the accuracy of the audit. In the stage of quality assessment, the data entering the data center are evaluated by using the data quality evaluation index, and the results of quality analysis and evaluation are obtained. Finally, a data quality monitoring system is designed and developed, which not only realizes the whole process of monitoring the data quality in the data center, but also combines with the requirement of the quality control of the data center. It also realizes the evaluation of the data quality. The system has been applied in the information center project of Daqing oil field downhole operation branch. The results show that the system has good applicability.
【學(xué)位授予單位】:東北石油大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP308;TP311.13
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 程志華;倪時(shí)龍;黃文思;龔賀;;企業(yè)級非結(jié)構(gòu)化數(shù)據(jù)管理平臺(tái)研究及實(shí)踐[J];電力信息化;2012年03期
2 張文娟;;中國電子文件元數(shù)據(jù)標(biāo)準(zhǔn)研究綜述[J];電子政務(wù);2012年01期
3 李明;;管理信息系統(tǒng)中提高數(shù)據(jù)質(zhì)量方法技術(shù)[J];電腦知識(shí)與技術(shù);2013年04期
4 朱如,李慶峰;數(shù)據(jù)質(zhì)量管理與企業(yè)信息化建設(shè)[J];計(jì)算機(jī)時(shí)代;2005年06期
5 丁斌,劉志鏡,武安波;基于XML/RDF的制造型企業(yè)元數(shù)據(jù)描述和資源發(fā)現(xiàn)[J];計(jì)算機(jī)應(yīng)用研究;2002年02期
6 孫中東;;企業(yè)級數(shù)據(jù)治理框架下的數(shù)據(jù)質(zhì)量管理[J];金融電子化;2011年06期
7 王輝;;企業(yè)信息化過程中的數(shù)據(jù)質(zhì)量監(jiān)控[J];數(shù)字石油和化工;2006年10期
8 潘淵洋;李光輝;徐勇軍;;基于DBSCAN的環(huán)境傳感器網(wǎng)絡(luò)異常數(shù)據(jù)檢測方法[J];計(jì)算機(jī)應(yīng)用與軟件;2012年11期
9 鄭芒英;;數(shù)據(jù)質(zhì)量管理平臺(tái)的研究及應(yīng)用[J];寧波職業(yè)技術(shù)學(xué)院學(xué)報(bào);2013年01期
10 張玉琴;付盈春;;環(huán)境監(jiān)測過程的質(zhì)量控制與質(zhì)量保證[J];遼寧化工;2013年03期
相關(guān)博士學(xué)位論文 前1條
1 張曼;面向服務(wù)的業(yè)務(wù)流程建模與驗(yàn)證研究[D];西安電子科技大學(xué);2012年
相關(guān)碩士學(xué)位論文 前9條
1 吉文杰;基于元數(shù)據(jù)的數(shù)據(jù)中心管理系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[D];東華大學(xué);2011年
2 許從余;土地利用數(shù)據(jù)質(zhì)量控制與評價(jià)體系研究[D];浙江大學(xué);2011年
3 應(yīng)磊;農(nóng)業(yè)搜索引擎中的異常數(shù)據(jù)檢測[D];中國科學(xué)技術(shù)大學(xué);2010年
4 劉益江;數(shù)據(jù)倉庫的數(shù)據(jù)質(zhì)量分析與評價(jià)[D];廣東工業(yè)大學(xué);2012年
5 卜媛媛;數(shù)據(jù)質(zhì)量規(guī)則挖掘與檢測系統(tǒng)的研究與開發(fā)[D];暨南大學(xué);2012年
6 游志青;數(shù)據(jù)質(zhì)量管理平臺(tái)的設(shè)計(jì)與實(shí)現(xiàn)[D];大連理工大學(xué);2012年
7 叢慧剛;基于業(yè)務(wù)規(guī)則的數(shù)據(jù)中心數(shù)據(jù)質(zhì)量研究[D];東北石油大學(xué);2012年
8 盧芳;業(yè)務(wù)流程可視化建模方法的研究與設(shè)計(jì)[D];山東大學(xué);2012年
9 張平;海量數(shù)據(jù)相似重復(fù)記錄檢測的研究[D];桂林電子科技大學(xué);2011年
本文編號:2399757
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2399757.html