基于云計(jì)算虛擬化平臺(tái)的內(nèi)存管理研究
[Abstract]:Cloud computing technology can integrate network, computing, storage and other computer resources, through the network flexible to provide users with a variety of high-quality computing services. Virtualization technology is the foundation of cloud computing, which can realize the efficient management and use of computer resources. Memory virtualization is not only the most complex part of virtualization technology, but also the key to improve the efficiency of virtualization. In the virtualization environment, the memory requirement changes with the running of different applications, but the traditional memory virtualization scheme can not adjust the virtual machine memory efficiently according to the memory usage of the virtual machine. This kind of circumstance often can cause the waste of memory resource of virtualization platform. This paper designs an efficient memory management system based on KVM virtualization technology. The system consists of three parts: virtual machine memory monitor module, virtual machine memory balance module and multi-host memory balance module. Firstly, this paper designs a real-time and accurate memory awareness technology, which is less expensive for host and client than other technologies. Based on the real-time memory usage of virtual machine, this paper designs an efficient strategy of virtual machine memory adjustment combined with ant colony algorithm, which can allocate virtual machine memory reasonably. By combining virtual machine memory balloon technology and virtual machine memory hot addition technology, the two technologies can adjust virtual machine memory efficiently and mutually. Different from other memory management techniques which can only adjust the memory usage under a single host the system can also achieve memory balance between multiple hosts through virtual machine online migration technology. Finally, the experimental results show that the memory management system can not only adjust virtual machine memory efficiently, but also achieve memory balance under multiple hosts. Finally, the comprehensive performance test shows that the system can achieve about 120% of the host computer memory overmatch, greatly improve the utilization of computer memory resources.
【學(xué)位授予單位】:杭州電子科技大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TP302;TP315
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武佳寧;;基于VMware vSphere的數(shù)據(jù)中心服務(wù)器虛擬化解決方案[J];微型電腦應(yīng)用;2016年09期
2 劉金鑫;董衛(wèi)宇;王煒;王立新;;基于注解信息的系統(tǒng)虛擬機(jī)內(nèi)存尋址優(yōu)化技術(shù)[J];計(jì)算機(jī)工程與設(shè)計(jì);2016年09期
3 吳岳;;Hypervisor中內(nèi)存回收技術(shù)的改進(jìn)[J];計(jì)算機(jī)系統(tǒng)應(yīng)用;2016年09期
4 李雪竹;陳國(guó)龍;;云計(jì)算虛擬化平臺(tái)的內(nèi)存資源全局優(yōu)化研究[J];計(jì)算機(jī)工程;2015年07期
5 黃秋蘭;李莎;程耀東;陳剛;;高能物理計(jì)算環(huán)境中KVM虛擬機(jī)的性能優(yōu)化與應(yīng)用[J];計(jì)算機(jī)科學(xué);2015年01期
6 王志鋼;汪小林;靳辛欣;王振林;羅英偉;;Mbalancer:虛擬機(jī)內(nèi)存資源動(dòng)態(tài)預(yù)測(cè)與調(diào)配[J];軟件學(xué)報(bào);2014年10期
7 馬騰;;基于云計(jì)算的政務(wù)信息資源整合與服務(wù)模式研究[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年05期
8 黃俊;王慶鳳;劉志勤;王耀彬;;基于資源狀態(tài)蟻群算法的云計(jì)算任務(wù)分配[J];計(jì)算機(jī)工程與設(shè)計(jì);2014年09期
9 姚華超;王振宇;;基于KVM-QEMU與Libvirt的虛擬化資源池構(gòu)建[J];計(jì)算機(jī)與現(xiàn)代化;2013年07期
10 羅軍舟;金嘉暉;宋愛(ài)波;東方;;云計(jì)算:體系架構(gòu)與關(guān)鍵技術(shù)[J];通信學(xué)報(bào);2011年07期
相關(guān)碩士學(xué)位論文 前2條
1 李傳云;KVM虛擬機(jī)熱遷移算法分析及優(yōu)化[D];浙江大學(xué);2016年
2 劉永;云計(jì)算環(huán)境下虛擬機(jī)資源調(diào)度策略研究[D];山東師范大學(xué);2012年
,本文編號(hào):2393568
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2393568.html