基于云計(jì)算和機(jī)器學(xué)習(xí)的短期風(fēng)電功率預(yù)測研究
[Abstract]:With the adjustment of energy structure in China, the installed capacity of wind power is increasing rapidly. Forecasting wind power accurately and timely can provide an important basis for the reasonable dispatch of power grid, reduce the abandonment of wind, and effectively improve the utilization rate of wind power. At the same time, with the improvement of the intelligent level of wind farm, the scale of wind power monitoring data is increasing, which poses a new challenge to the computational performance of traditional wind power prediction model. In recent years, artificial neural network (Ann), support vector machine (SVM) and its improved algorithms based on machine learning theory have been widely used in short-term wind power prediction, and there are many iterative computing scenarios in machine learning algorithms. The Spark distributed memory computing framework in cloud computing technology can efficiently perform iterative data processing and improve the performance of the algorithm. In view of the existing short-term wind power prediction model has some problems such as weak generalization, difficulty in determining the model structure and parameters, poor interpretability, etc., this paper synthesizes stochastic forest regression algorithm, M5P model tree, differential evolution algorithm, selective integration method, etc. A short-term wind power prediction method based on improved stochastic forest regression algorithm is proposed, and the algorithm is parallelized using Spark cloud computing platform. The main research work is as follows: (1) the traditional stochastic forest regression algorithm takes the classification regression tree as the meta-decision tree, aiming at the low prediction accuracy of the classification regression tree. In this paper, we use M5P model tree as meta-decision tree to construct multivariate linear regression model on leaf node. The prediction accuracy of meta-decision tree is improved effectively. (2) an improved differential evolutionary algorithm is proposed to solve the problem of partial poor prediction performance and low diversity of meta-decision trees in random forests. It is applied to the selective ensemble of stochastic forest meta-decision tree, and the partial optimal subset of meta-decision tree is selected among all meta-decision trees to form a new random forest. The final prediction results are obtained by weighted computation. (3) aiming at the high computational complexity of stochastic forest algorithm, the parallelism of stochastic forest algorithm and differential evolution algorithm is analyzed, and the cloud computing architecture is studied. The Spark distributed memory computing framework in cloud computing technology is adopted to improve the performance of the algorithm effectively. (4) the wind power monitoring data in Inner Mongolia is taken as an example. The proposed method is compared with the existing short-term wind power prediction algorithm and the traditional stochastic forest regression algorithm. At the same time, we use the CDH5 version of Cloudera company to build the cloud computing platform on the laboratory server, and test the parallelization performance of the proposed algorithm. The experimental results show that the proposed method has high prediction accuracy, generalization, interpretability and good parallelism.
【學(xué)位授予單位】:華北電力大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TM614;TP3;TP181
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 錢政;裴巖;曹利宵;王婧怡;荊博;;風(fēng)電功率預(yù)測方法綜述[J];高電壓技術(shù);2016年04期
2 張穎超;郭曉杰;葉小嶺;鄧華;;一種短期風(fēng)電功率集成預(yù)測方法[J];電力系統(tǒng)保護(hù)與控制;2016年07期
3 ;2015年中國風(fēng)電裝機(jī)容量統(tǒng)計(jì)[J];風(fēng)能;2016年02期
4 ;2015年全球風(fēng)電裝機(jī)統(tǒng)計(jì)[J];風(fēng)能;2016年02期
5 王保義;王冬陽;張少敏;;基于Spark和IPPSO_LSSVM的短期分布式電力負(fù)荷預(yù)測算法[J];電力自動(dòng)化設(shè)備;2016年01期
6 楊錫運(yùn);關(guān)文淵;劉玉奇;肖運(yùn)啟;;基于粒子群優(yōu)化的核極限學(xué)習(xí)機(jī)模型的風(fēng)電功率區(qū)間預(yù)測方法[J];中國電機(jī)工程學(xué)報(bào);2015年S1期
7 馬斌;張麗艷;;一種基于徑向基神經(jīng)網(wǎng)絡(luò)的短期風(fēng)電功率直接預(yù)測方法[J];電力系統(tǒng)保護(hù)與控制;2015年19期
8 吳瀟雨;和敬涵;張沛;胡駿;;基于灰色投影改進(jìn)隨機(jī)森林算法的電力系統(tǒng)短期負(fù)荷預(yù)測[J];電力系統(tǒng)自動(dòng)化;2015年12期
9 薛禹勝;郁琛;趙俊華;Kang LI;Xueqin LIU;Qiuwei WU;Guangya YANG;;關(guān)于短期及超短期風(fēng)電功率預(yù)測的評(píng)述[J];電力系統(tǒng)自動(dòng)化;2015年06期
10 王德文;孫志偉;;電力用戶側(cè)大數(shù)據(jù)分析與并行負(fù)荷預(yù)測[J];中國電機(jī)工程學(xué)報(bào);2015年03期
相關(guān)碩士學(xué)位論文 前6條
1 楊劍南;基于人工神經(jīng)網(wǎng)絡(luò)的短期風(fēng)功率預(yù)測研究[D];華北電力大學(xué);2015年
2 孫科;基于Spark的機(jī)器學(xué)習(xí)應(yīng)用框架研究與實(shí)現(xiàn)[D];上海交通大學(xué);2015年
3 李霄;基于提升小波和最小二乘支持向量機(jī)的風(fēng)電功率預(yù)測[D];上海交通大學(xué);2015年
4 唐振坤;基于Spark的機(jī)器學(xué)習(xí)平臺(tái)設(shè)計(jì)與實(shí)現(xiàn)[D];廈門大學(xué);2014年
5 李貞貴;隨機(jī)森林改進(jìn)的若干研究[D];廈門大學(xué);2013年
6 蔡林霖;隨機(jī)森林的模型選擇及其并行化方法[D];哈爾濱工業(yè)大學(xué);2013年
,本文編號(hào):2296195
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2296195.html