4-bit SONOS存儲器多值存儲技術及器件物理研究
[Abstract]:Charge trapping type memories, which have the advantages of low voltage, low cost and high reliability have been widely studied in recent years, and the charge trapping type memory becomes an alternative to replace the traditional floating gate flash memory in the future. The silicon nitride read-only memory (NROM) is a unique local charge trapping type polysilicon-silicon nitride-silicon dioxide-silicon (SONOS) memory. At the same time, multi-bit and multi-value programming technology is applied to realize the storage of 4 bits per unit, and the storage density is greatly improved. However, as the channel length of memory cell decreases to 90nm, the NROM memory is faced with many problems: shallow trench isolation (STI) process seriously affects the performance of the corner cell of the NROM, and the second bit effect seriously affects the multi-bit storage characteristic of the NROM cell. the endurance and retention characteristics of the multi-value storage unit are further degraded; the charge retention mechanism remains uncertain and the like. In view of these problems, the thesis carries out a series of research work, and the main achievements are: (1) The experimental results show that the channel hot electron injection programming efficiency of the NROM corner cell near the STI is significantly lower than that of the STI. the initial threshold voltage distribution of the corner and center cells exhibits a significant non-uniformity, By means of TCAD process simulation, it is found that the boron precipitation effect caused by STI reduces the boron concentration in the active area of corner cell, and it is the main factor of reducing the programming efficiency of corner cell. At the same time, it is found that the higher STI compressive stress reduces the electron mobility of the active region of the corner cell, which causes the initial threshold voltage distribution of the corner and the center cell to be different due to the boron precipitation effect. In order to reduce the influence of small S TI on corner elements, an additional boron implantation in STI region is proposed as a solution. Methods: By adjusting the dosage and energy of boron implantation, the boron concentration of the active region of the corner cell was compensated, and the corner cell was almost the same as the center cell. In addition, the effects of the additional boron implantation on the threshold voltage of the STI compressive stress and the boron precipitation cancel each other, and the initial threshold voltage distribution of the corner cell and the center cell is not consistent, and the problem is also obtained (2) The experimental results show that the traditional channel hot electron injection (CHEI) programming is affected by the secondary hot electron injection effect, and the hot electron injection distribution is wider than that of the hot hole injection. After multiple programming/ erase cycles, the residual charge gradually builds up, the second bit effect of the cell is aggravated, and meanwhile, the unit stress resistance and the holding performance are caused to occur. In order to suppress secondary hot electron injection, to obtain the matching of injection electron and hole distribution, an improved substrate positive bias C was proposed. HEI is programmed. Compared with the traditional CHEI programming, the substrate of the device is connected with a positive voltage of 1. 5V instead of 0V, and the secondary battery is effectively restrained. the source electrode of the device is connected with the 1V voltage, so that the PN junction between the source electrode and the substrate is prevented from being biased, The experimental results show that the programming method greatly improves the stress resistance and the holding performance of the NROM device, and the second bit effect is obtained. The programming method is compatible with the amplitude increment pulse programming technology adopted by the NROM, and can be directly used for realizing the multi-value of the NROM product of 4 bits/ unit. multi-bit programming. (3) a novel high density is proposed The programming method comprises the following steps: firstly carrying out double-sided tape-tunneling through hot hole injection erasing, uniformly injecting holes generated by the strip-and-band tunneling through into a storage layer above the device channel, and erasing the NROM device to the threshold voltage.-0. 5V state. Then perform local program and erase operation with negative ripple value voltage as the new initial state to obtain 8-value memory state, and realize each The experimental results show that the 8-value cell storage window is almost 1 times larger than the 4-value cell storage window. After 1000 times of programming/ erase cycle operation, it still has a large read-out window, and it has better performance. The electric charge loss mechanism of the NROM device is studied, and the charge is confirmed. The experimental results show that when the injected electrons and holes are matched, the injected electrons can be effectively erased, and the charge is distributed in a polar distribution in the storage layer. while the injected electrons are wider than the injected hole distribution, The injected electrons cannot be completely erased. After multiple programming/ erasing, the residual electrons and holes gradually accumulate to form electrons hole-electron tripolar distribution. Since the trap level of the hole is 0. 3eV lower than that of electrons, the accumulated holes are more likely to be excited from the trap to the conduction band through the Frenkle-Poole mechanism, and then the electrons laterally spread and injected in the silicon nitride storage layer are compounded, resulting in At the same time, it is shown that when injecting electron and hole distribution, the defect of tunneling through oxide layer and the density of interface state do not degrade the holding characteristic, so as to further confirm the interface state annealing and the positive charge auxiliary tunnel of oxide layer. It is not the main mechanism of charge loss, and the lateral expansion distribution of electric charges in silicon nitride
【學位授予單位】:南京大學
【學位級別】:博士
【學位授予年份】:2012
【分類號】:TP333
【相似文獻】
相關期刊論文 前10條
1 車明康;可在系統(tǒng)內(nèi)重新編程的非易失存儲器——閃爍EPROM[J];微電子學與計算機;1992年09期
2 J.P.賴特伯克;T.P.布羅迪;何自強;;雷達系統(tǒng)的識別方法[J];雷達與對抗;1982年08期
3 凌云,林殷茵,賴連章,喬保衛(wèi),賴云鋒,馮潔,湯庭鰲,蔡炳初,Bomy.Chen;Ge_2Sb_2Te_5材料與非揮發(fā)相轉變存儲器單元器件特性[J];功能材料;2005年08期
4 劉偉峰;王偉;張小平;;一種應用于UHF RFID無源標簽芯片的單柵存儲器[J];物聯(lián)網(wǎng)技術;2011年04期
5 洪志良,韓興成,李興仁,付志軍,黃震,束克留;電可擦除存儲器單元的模型[J];半導體學報;1999年09期
6 R.K.Draving;王行剛;;一臺整體線路宇宙航行計算機的技術描述[J];計算機研究與發(fā)展;1965年07期
7 劉恩榮;;N溝道工藝促進了MQS存儲器的發(fā)展[J];微電子學;1973年03期
8 宣大興;;存儲器可靠性的計算方法[J];無線電技術;1993年00期
9 賀于;數(shù)字化圖書館前瞻[J];西南民族學院學報(哲學社會科學版);2000年06期
10 艾延寶;;光盤——激光存儲技術的應用[J];現(xiàn)代物理知識;2005年06期
相關會議論文 前10條
1 林曄;徐穎;;利用虛擬化存儲技術實現(xiàn)數(shù)據(jù)中心機房的安全搬遷[A];中國新聞技術工作者聯(lián)合會2011年學術年會論文集(上篇)[C];2011年
2 張學紅;劉志芳;;云存儲技術研究與探討[A];全國數(shù)字媒體技術專業(yè)建設與人才培養(yǎng)研討會論文集[C];2011年
3 張意;;玻殼輸送中柔性存儲技術的控制策略[A];電子玻璃技術學術論文集[C];2004年
4 林茂;孫鵬龍;林新巧;;NAS網(wǎng)絡存儲技術在地震解釋中的應用[A];第六屆全國計算機應用聯(lián)合學術會議論文集[C];2002年
5 盧江暉;;視頻服務器存儲技術的新發(fā)展[A];2009中國電影電視技術學會影視技術文集[C];2010年
6 王如軍;田莉;;模塊化柔性存儲技術[A];面向21世紀的科技進步與社會經(jīng)濟發(fā)展(下冊)[C];1999年
7 劉紹南;;高可用性系統(tǒng)中的存儲技術[A];第四屆中國青年運籌與管理學者大會論文集[C];2001年
8 高麗榮;;互聯(lián)星空流媒體平臺的建設[A];海南省通信學會學術年會論文集(2006)[C];2006年
9 金如集;;激光存儲技術與社科信息工作[A];高校信息理論研究[C];1997年
10 何慶聲;;光學多通道體全息快速目標識別技術[A];2007年光電探測與制導技術的發(fā)展與應用研討會論文集[C];2007年
相關重要報紙文章 前10條
1 劉霞;IBM研發(fā)出最新多位相變存儲器[N];科技日報;2011年
2 通訊員 李冬云;國內(nèi)首個高效能服務器和存儲技術實驗室落戶浪潮[N];濟南日報;2007年
3 樂天 編譯;閃存之后哪種存儲技術當?shù)?[N];計算機世界;2010年
4 耿成山;行業(yè)需求牽動存儲技術新意頻頻[N];中國計算機報;2003年
5 安勇龍;新興存儲技術突破多 大規(guī)模商用是考驗[N];中國電子報;2007年
6 林宗輝;嵌入式系統(tǒng)緩存的設計與發(fā)展[N];電子資訊時報;2007年
7 董唯元;ILM,皇帝的新裝?[N];中國計算機報;2007年
8 本報記者 周馨怡 宇瀚;荷蘭環(huán)境大臣:高增長國家應力推碳捕捉和存儲技術[N];21世紀經(jīng)濟報道;2009年
9 本報記者 張峰;管理:高效之源[N];網(wǎng)絡世界;2003年
10 ;梳理散亂的數(shù)據(jù)[N];計算機世界;2005年
相關博士學位論文 前10條
1 徐躍;4-bit SONOS存儲器多值存儲技術及器件物理研究[D];南京大學;2012年
2 閆小兵;過渡金屬氧化物阻變存儲器的制備及其開關機制研究[D];南京大學;2011年
3 謝宏偉;二元過渡金屬氧化物的阻變存儲器研究[D];蘭州大學;2013年
4 湯振杰;納米晶及納米疊層基電荷俘獲型存儲器的研究[D];南京大學;2012年
5 劉琦;高速、高密度、低功耗的阻變非揮發(fā)性存儲器研究[D];安徽大學;2010年
6 劉璐;高k柵堆棧電荷陷阱型MONOS存儲器的研究[D];華中科技大學;2013年
7 姜丹丹;硅納米晶存儲器可靠性研究[D];安徽大學;2012年
8 高旭;簡單氧化物薄膜阻變存儲特性研究[D];南京大學;2011年
9 盧茜;銅互連結構的力學性質及基于互連結構制備的阻變存儲器研究[D];復旦大學;2011年
10 毛啟楠;基于ZnO薄膜電阻存儲器的制備及性能研究[D];浙江大學;2011年
相關碩士學位論文 前10條
1 劉曉昱;氧基阻變存儲器阻變機理和耐久性失效研究[D];山東大學;2013年
2 章征海;相變混合存儲器的研究與設計[D];華中科技大學;2012年
3 張佶;高密度阻變存儲器的設計[D];復旦大學;2010年
4 徐川;相變存儲器的熱應力模擬及應力傳感器研究[D];華中科技大學;2012年
5 劉凱;過渡金屬氧化物阻變存儲器動態(tài)特性的蒙特卡洛仿真[D];天津理工大學;2013年
6 黃冬其;相變存儲器單元高速擦寫測試方法研究[D];華中科技大學;2012年
7 王鳳虎;納米晶存儲器靈敏放大器電路的設計與實現(xiàn)[D];華中科技大學;2010年
8 李亦清;Ge_2Sb_2Te_5相變存儲器相變機理的研究[D];蘇州大學;2012年
9 雷華偉;阻變存儲器用NiO薄膜的制備與性能研究[D];電子科技大學;2012年
10 李曼;OTP存儲器的靈敏放大器設計技術研究[D];電子科技大學;2012年
,本文編號:2269454
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2269454.html