抗輻射高性能SRAM的設(shè)計(jì)技術(shù)研究
[Abstract]:With the rapid development of aviation industry, static random access memory (Static Random Memory,SRAM) is widely used in space environment, such as spacecraft and space satellite control system, because of its advantages of low power consumption and high speed. The space environment is full of many kinds of particles with radiation function. The radiation effects on the storage devices on electronic devices cause varying degrees of destruction, and have a serious impact on the performance and lifetime of the devices. With the decrease of the characteristic size and the improvement of the integration of IC circuits, the static random access memory in the space environment is required, that is, the ability to resist particle radiation while ensuring high speed and low consumption. In this paper, the basic working principle of static random access memory and the effect of space radiation on it are analyzed. The radiation effect is mainly divided into single particle effect and total dose effect. Since the 0.18um process is used in this paper, the total dose effect on the device can be ignored. In this paper, the single particle effect is mainly discussed in the design of radiation resistant reinforcement of SRAM. Firstly, the working mechanism of the three reinforcement schemes, which are process grade reinforcement, system level reinforcement and circuit level reinforcement, is studied and analyzed. Then the feasibility of the scheme and the degree of difficulty in its implementation are discussed. As the most important part of SRAM, memory cell has a great impact on the area, stability, reliability, power consumption and speed of the chip. Therefore, the design of anti-radiation reinforcement of SRAM is mainly aimed at the reinforcement design of memory cell. Double-stand interlocking memory cell (Dual Interlocked Storage Cell,DICE) is widely used in the reinforcement of SRAM memory cells because of its strong anti-single particle flip ability. However, under the condition of reading and writing, the memory cell of dice structure will fail against single particle effect. For this reason, the SRAM reinforcement scheme designed in this paper adopts the memory cell of the improved DICE structure, that is, the DICE structure which is separated from the read and write structure. Secondly, the column / decode circuit, read / write precharge circuit, sensitive amplifier circuit and read / write path of SRAM are designed, and the correctness of each circuit is verified by simulation. Finally, based on 0.18um process, the 4K*32 bit SRAM integrated circuit reading and writing function verification, anti-radiation performance verification, port and timing function verification, memory cell and peripheral circuit basic function simulation verification, anti-radiation performance verification and so on. At 1.8 V voltage, the simulation results show that the designed SRAM can work normally at 75MHz frequency and maintain good performance.
【學(xué)位授予單位】:江南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP333
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 武書(shū)肖;李磊;任磊;;基于SRL結(jié)構(gòu)的抗輻射SRAM單元設(shè)計(jì)[J];微電子學(xué);2016年06期
2 孫敬;陳振嬌;陶建中;張宇涵;;改進(jìn)DICE結(jié)構(gòu)的D觸發(fā)器抗SEU設(shè)計(jì)[J];電子與封裝;2016年08期
3 孫敬;陳振嬌;陶建中;薛海衛(wèi);徐新宇;;基于TDICE單元的SRAM抗SEU加固設(shè)計(jì)[J];微電子學(xué)與計(jì)算機(jī);2016年07期
4 張丹丹;楊海鋼;李威;黃志洪;高麗江;李天文;;DICE型D觸發(fā)器三模冗余實(shí)現(xiàn)及輻照實(shí)驗(yàn)驗(yàn)證[J];半導(dǎo)體技術(shù);2014年07期
5 陳楠;魏廷存;魏曉敏;高武;鄭然;;抗單粒子翻轉(zhuǎn)效應(yīng)的SRAM研究與設(shè)計(jì)[J];固體電子學(xué)研究與進(jìn)展;2013年05期
6 俞劍;;雙立互鎖單元單粒子效應(yīng)加固方法研究[J];計(jì)算機(jī)工程;2013年03期
7 田浩;楊洪強(qiáng);馬驍;何善亮;;基于DICE結(jié)構(gòu)的主-從型抗輻照觸發(fā)器設(shè)計(jì)[J];微電子學(xué);2013年01期
8 QIN JunRui;LI DaWei;CHEN ShuMing;;A novel layout for single event upset mitigation in advanced CMOS SRAM cells[J];Science China(Technological Sciences);2013年01期
9 王一奇;趙發(fā)展;劉夢(mèng)新;呂蔭學(xué);趙博華;韓鄭生;;基于RHBD技術(shù)的深亞微米抗輻射SRAM電路的研究[J];半導(dǎo)體技術(shù);2012年01期
10 章凌宇;賈宇明;李磊;胡明浩;;基于DICE結(jié)構(gòu)的抗輻射SRAM設(shè)計(jì)[J];微電子學(xué);2011年01期
相關(guān)博士學(xué)位論文 前1條
1 劉必慰;集成電路單粒子效應(yīng)建模與加固方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2009年
相關(guān)碩士學(xué)位論文 前8條
1 張穎;SRAM抗SEU加固單元設(shè)計(jì)與ECC編碼實(shí)現(xiàn)[D];西安電子科技大學(xué);2015年
2 王博;抗輻射加固SRAM設(shè)計(jì)[D];西安電子科技大學(xué);2015年
3 楊靜;抗多節(jié)點(diǎn)翻轉(zhuǎn)的存儲(chǔ)器設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2014年
4 常鳳偉;超低壓抗輻射SRAM設(shè)計(jì)[D];哈爾濱工業(yè)大學(xué);2014年
5 吳楊樂(lè);65nm工藝下一種新型MBU加固SRAM的設(shè)計(jì)與實(shí)現(xiàn)[D];國(guó)防科學(xué)技術(shù)大學(xué);2014年
6 張波;SRAM存儲(chǔ)器總劑量效應(yīng)研究[D];西安電子科技大學(xué);2014年
7 向文超;抗輻照SRAM存儲(chǔ)器的設(shè)計(jì)[D];國(guó)防科學(xué)技術(shù)大學(xué);2010年
8 劉征;單粒子效應(yīng)電路模擬方法研究[D];國(guó)防科學(xué)技術(shù)大學(xué);2006年
,本文編號(hào):2241149
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2241149.html