支持Hadoop配置的異構(gòu)虛擬機(jī)平臺的研究
[Abstract]:With the development of cloud computing technology, a variety of data centers of different sizes have emerged, and these data centers often have a variety of virtual machine management platforms (such as Eucalyptus, OpenNebula and OpenStack), and the requirements of application scenarios are completely different. Different management platforms require different operation and maintenance, development technology and experience. The server resources of different management platforms can not be dynamically shared, which affects the performance of flexible services. At the same time, because of the different machine configuration in the platform, the cloud computing application. Hadoop, which affects the upper layer of the platform, will be one of the cloud computing applications that have been widely used in data-intensive computing. The correct configuration of the configurable parameters of the MapReduce framework has an important effect on the performance of the calculation. However, when a heterogeneous Hadoop cluster is encountered, the user can only use the default configuration or manual configuration according to experience. Due to the large space available for parameter tuning, this often leads to poor performance due to misconfiguration. Aiming at the problems of various virtual machine platforms, this paper designs and implements a heterogeneous virtual machine management platform. On the basis of not changing the structure of the existing virtual machine management platform, the unified management and control of the existing mainstream virtual machine management platform and the balanced allocation of virtual resources are realized, and the extensible adaptation layer interface and driver components are also provided. Support for other heterogeneous virtual machine provisioning and management platforms. In order to solve the problem of Hadoop application on heterogeneous virtual machine platform, this paper presents a method of MapReduce online parameter automatic configuration based on reinforcement learning. This method uses off-line learning coarse-grained to create initialization strategy, on-line learning configures parameters according to the policy fine-grained, and iteratively updates the Q value table by trial and error method to make the configuration result close to optimal. The experimental results show that the proposed configuration method can effectively improve the performance of Hadoop, and can quickly iterate to achieve convergence, make full use of the machine resources running MapReduce tasks, and shorten the running time of the tasks.
【學(xué)位授予單位】:中南大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP302
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張帆;李磊;楊成胡;陳麗珍;;基于Eucalyptus構(gòu)建私有云計(jì)算平臺[J];電信科學(xué);2011年11期
2 崔巍;李益發(fā);斯雪明;;基于Eucalyptus的基礎(chǔ)設(shè)施即服務(wù)云框架協(xié)議設(shè)計(jì)[J];電子與信息學(xué)報(bào);2012年07期
3 張倩;齊德昱;;面向服務(wù)的云制造協(xié)同設(shè)計(jì)平臺[J];華南理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年12期
4 柴玉梅;景慧敏;;一種在多Agent系統(tǒng)中求帕累托效率解的方法[J];計(jì)算機(jī)工程與應(yīng)用;2010年22期
5 公偉;劉培玉;遲學(xué)芝;賈嫻;;云取證模型的構(gòu)建與分析[J];計(jì)算機(jī)工程;2012年11期
6 溫少君;陳俊杰;郭濤;;一種云平臺中優(yōu)化的虛擬機(jī)部署機(jī)制[J];計(jì)算機(jī)工程;2012年11期
7 柳香;李俊紅;段勝業(yè);;基于混沌PSO算法的Hadoop配置優(yōu)化[J];計(jì)算機(jī)工程;2012年11期
8 楊星;馬自堂;孫磊;;云環(huán)境下基于性能向量的虛擬機(jī)部署算法[J];計(jì)算機(jī)應(yīng)用;2012年01期
9 顧昊;錢曉俊;梁洪亮;;開源平臺下軟件管理技術(shù)的研究[J];計(jì)算機(jī)應(yīng)用研究;2007年08期
10 陳康;鄭緯民;;云計(jì)算:系統(tǒng)實(shí)例與研究現(xiàn)狀[J];軟件學(xué)報(bào);2009年05期
,本文編號:2239011
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2239011.html