面向認知無線電的數(shù)字信號處理器體系結(jié)構(gòu)技術(shù)研究
[Abstract]:The rapid development of computer and microelectronics technology has promoted the rapid innovation of communication technology. The widely used wireless communication technology is playing a more and more important role in people's work and life. At the same time, with the increasing demand for high-speed multimedia wireless communication network, wireless communication on radio. Cognitive radio is a kind of software radio with spectrum sensing and intelligent decision-making ability. It can not only improve the utilization of radio spectrum resources, but also further improve the intelligence level of communication system. Line processor adds more functions and higher computational performance requirements such as spectrum sensing, reconfigurable computing and intelligent decision-making to the needs of software radio processors. Therefore, it is of great significance to study the architecture of digital signal processor for cognitive radio in depth. With the support of the project of Technology Research and Development and several projects of National Natural Science Foundation of China, the spectrum sensing algorithm and architecture of cognitive radio, the reconfigurable baseband processor architecture of cognitive radio and the node architecture of autonomous cognitive radio are studied in depth.
1. Design and implementation of spectrum blind sensing algorithm and architecture for cognitive radio based on energy detection. Spectrum blind sensing is very important for the implementation of cognitive radio system. In order to accelerate the calculation of energy detection and adapt to the requirements of changing detection accuracy, a pipeline architecture with dynamic reconfigurable function is designed and implemented. The FFT processor can reconstruct the FFT computation between 64 and 2048 points, while maintaining good power consumption and area overhead. A two-stage energy detection algorithm is proposed. Based on this algorithm and reconfigurable FFT processor, an energy detector with adjustable detection performance is designed and implemented.
2. Architecture design and implementation of parallel real-time spectrum sensing coprocessor based on cyclostationary feature detection algorithm. Cyclic stationary feature detection is widely used in narrowband signal DOA estimation, signal recognition and radar signal parameter estimation, but its high computational complexity has limited its application as real-time signal processing. A computationally efficient parallel cyclostationary feature detection algorithm is proposed. The algorithm is mapped and implemented on a multi-core software radio processor. For 32768 sampling times at 8 MHz, the spectrum sensing time is 78.8 Ms. Based on the parallel cyclostationary feature detection algorithm, the parallel cyclostationary feature detection is designed and implemented. Based on the reconfigurable FFT processor proposed in this paper, a reconfigurable spectrum sensing coprocessor with the functions of energy sensing and cyclostationary feature detection is designed and implemented, which realizes the balance of spectrum sensing performance and power consumption. Balance.
3. Architecture design and implementation of a reconfigurable baseband processor for cognitive radio. Reconfigurable baseband processing for cognitive radio poses a new challenge to digital signal processors. A cognitive radio baseband system model is proposed. The computational characteristics of baseband processing based on NC-OFDM transmission technology are analyzed. A reconfigurable architecture model for baseband processing applications is proposed, and a reconfigurable multiprocessor architecture CORA based on this model is designed and implemented. The experimental results show that the architecture design can meet the requirements of baseband processing computation in cognitive radio based on NC-OFDM technology.
4. The conceptual model of autonomous cognitive radio, the prototype design and implementation of cognitive circle and node architecture of autonomous cognitive radio. The conceptual model of autonomous cognitive radio (ACR) and the cognitive circle of autonomous cognitive radio (ACR) are proposed. The functions and detailed definitions of related components of the conceptual model of autonomous cognitive radio (ACR) are given. Based on ACE Toolkit, an autonomous cognitive radio simulation environment is designed and implemented. The point architecture prototype ACRA maps the cognitive radio function definition stipulated in IEEE 802.22 protocol onto ACRA. The experimental results show that ACRA is reasonable in spectrum management and has superiority in spectrum sensing performance.
In summary, this paper studies the architecture technology of digital signal processor for cognitive radio, proposes the spectrum sensing coprocessor for cognitive radio, the baseband processing model for cognitive radio, the reconfigurable baseband processor, and the architecture model and prototype implementation of autonomous cognitive radio nodes. The research and architecture implementation of mobile cognitive radio is of great significance and value.
【學位授予單位】:國防科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2013
【分類號】:TN925;TP332
【相似文獻】
相關(guān)期刊論文 前10條
1 劉佳;馬惠珠;;基于二階循環(huán)統(tǒng)計量的頻譜感知方法[J];應用科技;2009年01期
2 張新春;何世彪;胡智倫;;基于圖論的動態(tài)頻譜分配[J];無線通信技術(shù);2010年01期
3 朱華進;趙晶;曹誠;;認知無線電在電磁頻譜管理中的應用[J];科技資訊;2010年10期
4 魏飛;楊震;;一種基于跳預約多址接入認知無線MAC協(xié)議[J];江蘇通信技術(shù);2006年06期
5 郭陽;王衍文;;認知無線電技術(shù)及其政策影響和市場前景預測[J];中興通訊技術(shù);2007年03期
6 鄧韋;朱琦;;認知無線電系統(tǒng)中頻譜感知方法的研究[J];通信技術(shù);2007年11期
7 趙陸文;周志杰;繆志敏;惠毅;;淺析認知無線電在軍事通信中的應用[J];無線通信技術(shù);2007年04期
8 殷志勇;;動態(tài)頻譜分配——認知無線電中的關(guān)鍵技術(shù)[J];黑龍江科技信息;2008年16期
9 趙陸文;繆志敏;黃炳剛;;一種新的認知無線電資源管理信道[J];蘭州大學學報(自然科學版);2008年S1期
10 向春鋼;何世彪;;認知無線電中的一種分散協(xié)作頻譜感知技術(shù)[J];移動通信;2008年10期
相關(guān)會議論文 前10條
1 羅凡;陳金鷹;;認知無線電在震后應急通信中的應用[A];四川省通信學會2008年學術(shù)年會論文集[C];2008年
2 周驥;;淺談認知無線電在軍事領(lǐng)域的應用[A];四川省通信學會2010年學術(shù)年會論文集[C];2010年
3 彭開志;楊平;王書誠;;認知無線電在通信系統(tǒng)中應用研究[A];2011船舶電氣及通訊導航技術(shù)發(fā)展論壇論文集[C];2011年
4 劉慶軍;畢少筠;孫進;劉天雄;;認知無線電技術(shù)在衛(wèi)星導航系統(tǒng)中的應用前景[A];第三屆中國衛(wèi)星導航學術(shù)年會電子文集——S09組合導航與導航新方法[C];2012年
5 李俊葶;陳金鷹;劉慶豐;徐廣偉;;淺談認知無線電[A];四川省通信學會2008年學術(shù)年會論文集[C];2008年
6 郝才勇;;基于認知無線電的頻譜管理策略[A];2011全國無線及移動通信學術(shù)大會論文集[C];2011年
7 劉慶豐;陳金鷹;李俊葶;卓有福;;基于認知無線電的高效頻譜利用技術(shù)[A];四川省通信學會2008年學術(shù)年會論文集[C];2008年
8 徐聰;宋志群;劉芳;;認知無線電中頻譜分配方法的研究[A];2010年通信理論與信號處理學術(shù)年會論文集[C];2010年
9 蘇胤杰;蔣鈴鴿;何晨;;基于協(xié)作通信的認知無線電中繼有效位置分析[A];2010年通信理論與信號處理學術(shù)年會論文集[C];2010年
10 王玲;彭啟琮;周婉婷;魏飛鳴;;基于主用戶歷史行為的認知無線電自適應檢測算法[A];2010年通信理論與信號處理學術(shù)年會論文集[C];2010年
相關(guān)重要報紙文章 前10條
1 本報記者 盧子月;認知無線電讓網(wǎng)絡(luò)不再擁擠[N];通信產(chǎn)業(yè)報;2011年
2 特約撰稿人 吳康迪;日本4G路線明晰 “催熟”新技術(shù)[N];通信產(chǎn)業(yè)報;2009年
3 江蘇泰州市無線電管理辦公室 劉瀏 竇沛沛;認知無線電整合“閑散”頻譜[N];通信產(chǎn)業(yè)報;2009年
4 本報記者 朱杰;無線頻譜資源的優(yōu)化者[N];中國計算機報;2010年
5 本報記者 盧子月;無線似水 應需而動[N];通信產(chǎn)業(yè)報;2011年
6 記者 解悅 通訊員 樊忠衛(wèi);未來手機會智能“尋網(wǎng)”[N];南京日報;2008年
7 本報記者 江東洲 劉昊 通訊員 王源林;集聚電子信息學科優(yōu)勢 助推廣西經(jīng)濟社會發(fā)展[N];科技日報;2008年
8 工業(yè)和信息化部通信科技委副主任 陳如明;未來通信頻率規(guī)劃管理四大策略[N];通信產(chǎn)業(yè)報;2009年
9 上海無線通信研究中心研發(fā)一部部長 胡宏林;2015年4G將進入商用期[N];通信產(chǎn)業(yè)報;2009年
10 本報記者 孟祥初;提高頻譜利用率迫在眉睫[N];通信產(chǎn)業(yè)報;2009年
相關(guān)博士學位論文 前10條
1 賀新穎;基于支持向量機的認知無線電若干關(guān)鍵技術(shù)研究[D];北京郵電大學;2009年
2 張國斌;認知無線電系統(tǒng)資源管理與分配關(guān)鍵技術(shù)研究[D];華南理工大學;2011年
3 楊磊;認知無線電系統(tǒng)中若干關(guān)鍵技術(shù)的研究[D];大連理工大學;2012年
4 裴二榮;認知無線電網(wǎng)絡(luò)中的資源優(yōu)化分配的研究[D];電子科技大學;2012年
5 胡富平;基于能量檢測的認知無線電協(xié)作頻譜檢測研究[D];華中科技大學;2010年
6 王思野;認知無線電網(wǎng)絡(luò)中協(xié)作通信和頻譜管理的研究[D];北京郵電大學;2011年
7 伍春;認知無線電中智能學習技術(shù)研究[D];西安電子科技大學;2014年
8 林威;基于認知無線電技術(shù)的頻譜資源利用研究[D];哈爾濱工業(yè)大學;2010年
9 王士顯;面向認知無線電的數(shù)字信號處理器體系結(jié)構(gòu)技術(shù)研究[D];國防科學技術(shù)大學;2013年
10 馬志W(wǎng)
本文編號:2236243
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2236243.html