基于MPI并行框架的實(shí)時(shí)注意力監(jiān)測(cè)腦機(jī)接口的研究與應(yīng)用
[Abstract]:Attention is a concept of psychology and a subject of research in brain science and bioinformatics. Monitoring people's attention can become an auxiliary tool for people to learn or work, thereby improving their learning and working efficiency, and even reducing the number of serious mistakes, such as learning in the process, If there is a tool to monitor students' attention, the teacher can remind the students when they are not focused, and the students can correct their mental state in time. In combination with computer science and biological information science, we can monitor human attention through brain-computer interfaces. It is a hot research topic to use computer to develop various kinds of BCI. However, at present, most of BCI's types are action types, that is to say, BCI is used to monitor what kind of action the brain is imagining. Then the Brain-Computer Interface (BCI) sends out the same action instructions to the external operation. The typical application of this BCI is the robot arm. However, there is a lack of research on the Brain-Computer Interface (BCI) for the mental state of monitoring attention in real time, because attention involves a lot of psychological knowledge and the research process is more complicated. The development of a real-time monitoring attention application system is less, more is offline processing of the brain computer interface, because the analysis and processing of brain waves is very complex, each processing step in the middle takes a certain amount of time. It is difficult to monitor in real time. In this paper, the current BCI technology and basic theory are deeply analyzed, and a real-time monitoring BCI is developed independently by absorbing the experience and theoretical knowledge of BCI development. And it is applied to monitor the attention of people in learning. The FIR algorithm based on Hanning window is used to extract six eigenvalues and the KNN (k-Nearest Neighbor) algorithm is used to classify the EEG signals. BCI needs a lot of training before it can be applied. Usually, a BCI needs several months' training from the beginning to the end. Therefore, the classification process will reduce the time efficiency with the increase of training data. Moreover, more and more BCI systems are running in pervasive environments, and many devices in pervasive environments have low computing performance, which makes it easier to meet the bottleneck of real-time response. Therefore, it is very important to improve the real-time performance of classifier for real-time application system. In this paper we use the framework of MPI (Message Passing Interface) parallel computing to parallelize the classification algorithm so as to reduce the time consumption of the classification process and achieve the need of real-time application.
【學(xué)位授予單位】:蘭州大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類號(hào)】:TP334.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 劉婕,劉燦文;求解一類邊界問題的最小曲面的數(shù)值并行算法[J];微型電腦應(yīng)用;2003年03期
2 曾志峰;Linux環(huán)境下MPI并行編程與算法實(shí)現(xiàn)研究[J];航空計(jì)算技術(shù);2004年02期
3 蔣英,雷永梅;MPI中的3種數(shù)據(jù)打包發(fā)送方式及其性能分析[J];計(jì)算機(jī)工程;2002年08期
4 郝曉云,范玉妹;用圖像展示并行效率的實(shí)現(xiàn)[J];計(jì)算機(jī)工程與應(yīng)用;2003年19期
5 劉華,徐煒民,孫強(qiáng);基于MPI并行程序的性能評(píng)測(cè)可視化工具[J];計(jì)算機(jī)工程;2004年10期
6 朱文明;高諾;;腦機(jī)接口技術(shù)研究概述[J];信息技術(shù)與信息化;2008年06期
7 張國(guó)勇;;基于MPI的反應(yīng)擴(kuò)散方程的并行計(jì)算[J];湖北師范學(xué)院學(xué)報(bào)(自然科學(xué)版);2009年02期
8 趙 軍,宋君強(qiáng),孔金珠;基于MPI環(huán)境的并行應(yīng)用軟件系統(tǒng)移植[J];計(jì)算機(jī)工程與設(shè)計(jì);2002年06期
9 孫振明;PROFIBUS工業(yè)現(xiàn)場(chǎng)總線在燒結(jié)自動(dòng)控制中的應(yīng)用[J];新疆鋼鐵;2002年01期
10 劉信安,李佳;基于PC集群系統(tǒng)的MPICH大規(guī)模并行計(jì)算實(shí)現(xiàn)與應(yīng)用研究[J];計(jì)算機(jī)與應(yīng)用化學(xué);2003年05期
相關(guān)會(huì)議論文 前10條
1 耿麗清;趙麗;元鵬賢;李宏偉;;基于雙層穩(wěn)態(tài)視覺誘發(fā)電位的腦機(jī)接口技術(shù)研究[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)D卷[C];2011年
2 錢久超;夏斌;楊文璐;;基于P300誘發(fā)電位的腦機(jī)接口技術(shù)研究綜述[A];全國(guó)第21屆計(jì)算機(jī)技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議(CACIS·2010)暨全國(guó)第2屆安全關(guān)鍵技術(shù)與應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
3 李焱;胡祥云;吳桂桔;廖國(guó)忠;;基于MPI的三維大地電磁正反演的并行算法研究[A];中國(guó)地球物理2010——中國(guó)地球物理學(xué)會(huì)第二十六屆年會(huì)、中國(guó)地震學(xué)會(huì)第十三次學(xué)術(shù)大會(huì)論文集[C];2010年
4 許麗;周南;徐泳;;基于MPI的二維穩(wěn)態(tài)溫度場(chǎng)并行計(jì)算[A];北京力學(xué)會(huì)第18屆學(xué)術(shù)年會(huì)論文集[C];2012年
5 陳連榮;彭朝暉;;高斯射線聲場(chǎng)模型在MPI環(huán)境下的并行算法設(shè)計(jì)[A];中國(guó)聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2011年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2011年
6 陶霖密;穆煜;楊澍;張中元;馬旭龍;;人-車交互系統(tǒng)的設(shè)計(jì)與實(shí)現(xiàn)[A];第18屆全國(guó)多媒體學(xué)術(shù)會(huì)議(NCMT2009)、第5屆全國(guó)人機(jī)交互學(xué)術(shù)會(huì)議(CHCI2009)、第5屆全國(guó)普適計(jì)算學(xué)術(shù)會(huì)議(PCC2009)論文集[C];2009年
7 王攀峰;杜云飛;周海芳;楊學(xué)軍;;面向大規(guī)模MPI程序的應(yīng)用級(jí)checkpointing技術(shù)[A];第15屆全國(guó)信息存儲(chǔ)技術(shù)學(xué)術(shù)會(huì)議論文集[C];2008年
8 劉鵬茂;柳建新;劉文R,
本文編號(hào):2181418
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2181418.html