基于多類運(yùn)動(dòng)想象異步腦—機(jī)接口系統(tǒng)的研究
[Abstract]:Electroencephalograms (EEG) collected on the scalp are an integral reflection of the electrophysiological activity of the brain cells, which is related to the state of human consciousness activity. As long as the EEG signal is analyzed, different conscious activities can be identified. Thus, a communication control system, Brain-Computer Interface (BCI), is formed, which is independent of the normal output channels of peripheral nerve and muscle. Motion imagination refers to the movement of the limbs without actual body movements. The EEG generated by the motion imagination has the characteristics of event-related synchronization and event-related synchronization. The brain-computer interface system based on it has many advantages, such as the user is not easy to fatigue, does not rely on the external stimulator, is suitable for a large number of people, and is more in line with the usage habits, so it is one of the research hot spots. Although the electroencephalogram (EEG) signal of motion imagination has received extensive attention, there are still many key problems that need to be solved. For example, the study of motion imagination based on left and right hand, foot and tongue is still at the stage of offline analysis. Online effect is still far from the actual requirements. Although the two kinds of motion imagination based on the left and the right hand have better online effect, the control commands produced are very limited, and they belong to the synchronous working mode, so the users can not control themselves completely. Therefore, this paper mainly focuses on how to improve the accuracy and speed of online BCI system based on motion imagination, increase the control degree of freedom and realize asynchronous work. In this paper, the acquisition, processing and design of asynchronous brain-computer interface system for four kinds of motion imagination EEG signals are studied. In the collection part, the location of the electrode, the lead mode and the specific design flow of the collection experiment are described, and the collection of four kinds of motion imaginary EEG signals is designed and realized. In the preprocessing part, independent component analysis (ICA) and Fir digital filter are used to remove EMG and EMG respectively. The filtering effect is analyzed by comparing the wavelet time-frequency images before and after filtering, and the power spectrum estimation is used in the feature extraction part. Wavelet packet decomposition and Hilbert-Huang transform are used to extract the eigenvector of the motion imaginary EEG signal, and the optimal eigenvector is obtained by further simplification of the eigenvector based on the distance criterion. In the part of pattern recognition, a one-to-one method is used to construct multi-classification support vector machine, and its parameters are optimized by genetic algorithm. The advantages and disadvantages are compared by classifying the characteristics of motion imaginary EEG signals. An ideal feature extraction algorithm is selected, which provides a basis for the selection of real-time online classifiers. Finally, combining the advantages of Alpha wave and motion imagination, a control strategy is designed. An asynchronous brain-computer interface system is established on LabVIEW platform, which realizes cursor control and web browsing.
【學(xué)位授予單位】:天津職業(yè)技術(shù)師范大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP334.7;TN911.7
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 徐寶國(guó);宋愛國(guó);王愛民;;基于小波包能量的腦電信號(hào)特征提取方法[J];東南大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年06期
2 王首勇,朱光喜,唐遠(yuǎn)炎;應(yīng)用最優(yōu)小波包變換的特征提取方法[J];電子學(xué)報(bào);2003年07期
3 張銀玲;張勇;李金磊;汲德體;;基于負(fù)熵的ICA算法[J];廣西輕工業(yè);2008年01期
4 李曉宇;張新峰;沈蘭蓀;;支持向量機(jī)(SVM)的研究進(jìn)展[J];測(cè)控技術(shù);2006年05期
5 張念;劉天佑;李杰;;FastICA算法及其在地震信號(hào)去噪中的應(yīng)用[J];計(jì)算機(jī)應(yīng)用研究;2009年04期
6 孫進(jìn);張征;周宏甫;;基于腦機(jī)接口技術(shù)的康復(fù)機(jī)器人綜述[J];機(jī)電工程技術(shù);2010年04期
7 王行愚;金晶;張宇;王蓓;;腦控:基于腦-機(jī)接口的人機(jī)融合控制[J];自動(dòng)化學(xué)報(bào);2013年03期
8 槐瑞托;楊俊卿;李東;;腦機(jī)接口中腦電信號(hào)提取方法和技術(shù)的研究進(jìn)展[J];生命科學(xué);2010年04期
9 劉泓;何慶華;閆慶廣;馮正權(quán);吳寶明;;基于EEG的腦-機(jī)接口實(shí)用化研究進(jìn)展[J];生物醫(yī)學(xué)工程學(xué)雜志;2010年03期
10 萬(wàn)柏坤;劉延剛;明東;孫長(zhǎng)城;綦宏志;張廣舉;程龍龍;;基于腦電特征的多模式想象動(dòng)作識(shí)別[J];天津大學(xué)學(xué)報(bào);2010年10期
相關(guān)博士學(xué)位論文 前4條
1 劉鐵軍;腦電信號(hào)中眼電偽跡去除方法研究[D];電子科技大學(xué);2008年
2 朱曉軍;HHT變換及其在腦電信號(hào)處理中的應(yīng)用研究[D];太原理工大學(xué);2012年
3 趙永健;獨(dú)立分量分析算法及其在信號(hào)處理中的應(yīng)用研究[D];山東大學(xué);2012年
4 李俊華;腦活動(dòng)狀態(tài)EEG信號(hào)解碼方法及其應(yīng)用[D];上海交通大學(xué);2012年
本文編號(hào):2122166
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2122166.html