圓錐探針電場(chǎng)增強(qiáng)特性的數(shù)值模擬研究
本文選題:光存儲(chǔ) + 錐尖探針; 參考:《大連理工大學(xué)》2013年碩士論文
【摘要】:隨著社會(huì)的不斷發(fā)展,人類所掌握的知識(shí)越來(lái)越多,尤其是進(jìn)入21世紀(jì)后,信息量呈現(xiàn)一種爆炸式的增長(zhǎng),速度比以往任何時(shí)候都快的多,現(xiàn)有的存儲(chǔ)技術(shù)已經(jīng)遠(yuǎn)遠(yuǎn)不能滿足知識(shí)大爆炸的時(shí)代背景。因此,超高密度的存儲(chǔ)技術(shù)的發(fā)展和革新已經(jīng)成為了時(shí)代發(fā)展的必然要求,尤其是近場(chǎng)光存儲(chǔ),以其能夠突破衍射極限限制的優(yōu)點(diǎn)吸引了眾多科研工作者的關(guān)注。 首先,本文對(duì)光存儲(chǔ)技術(shù)的歷史進(jìn)行了簡(jiǎn)單的介紹,并且給出了限制當(dāng)前光存儲(chǔ)發(fā)展的原因---衍射極限的概念。目前,藍(lán)光光盤(激光為藍(lán)光)單片容量可達(dá)到27GB。由于光的衍射極限的限制,傳統(tǒng)的遠(yuǎn)場(chǎng)光存儲(chǔ)發(fā)展的潛力十分有限。將來(lái)發(fā)展的大方向主要包括能夠突破光盤平面限制的三維光學(xué)體存儲(chǔ)和突破衍射分辨率極限的近場(chǎng)光學(xué)存儲(chǔ)技術(shù)。本文對(duì)這兩種存儲(chǔ)技術(shù)分別做了介紹。 其次,本文介紹了表面等離子體的基本概念。通過(guò)闡述表面等離子體的發(fā)現(xiàn)歷程以及金屬中等離子體的幾種模態(tài),使大家對(duì)于本文研究錐尖尖端電場(chǎng)增強(qiáng)特性的原理有一個(gè)詳盡的了解。隨后簡(jiǎn)單介紹了表面等離子體極化激元的幾種激勵(lì)方法。 最后,本文通過(guò)使用有限元方法(Finite Element Method),詳細(xì)分析了錐尖長(zhǎng)度和入射光與錐尖軸線夾角對(duì)電場(chǎng)局域增強(qiáng)的影響。工作目的是尋求最優(yōu)的錐尖形貌,使其達(dá)到錐尖尖端電場(chǎng)增強(qiáng)的最大值。在前人的工作中,人們僅僅對(duì)單獨(dú)的錐尖進(jìn)行研究,這樣只能在一定程度上反映出錐尖增強(qiáng)的光學(xué)響應(yīng)特性。在實(shí)際應(yīng)用中,錐尖還需要一系列的配套設(shè)施,其中最不能忽視的就是記錄介質(zhì)的影響。本文嘗試把記錄介質(zhì)引入到了模擬計(jì)算中,并且研究了記錄介質(zhì)的介電常數(shù)對(duì)電場(chǎng)增強(qiáng)的影響。這些模擬的結(jié)果不僅可以應(yīng)用在超高密度的光存儲(chǔ)上,也能應(yīng)用在傳感器的設(shè)計(jì)和制作上。通過(guò)一系列的計(jì)算我們得出最優(yōu)解:當(dāng)入射光波長(zhǎng)為632.8nm時(shí),Si3N4圓錐尖外包裹一層20nm厚金膜,在錐尖長(zhǎng)度為450nm和入射光與錐尖軸線夾角為113度時(shí),電場(chǎng)的局域增強(qiáng)最大。記錄介質(zhì)的存在使得圓錐尖電場(chǎng)增強(qiáng)的強(qiáng)度更強(qiáng),并且增強(qiáng)的范圍更加局域,光學(xué)的斑點(diǎn)更小,因此可以得到更小的記錄點(diǎn)。
[Abstract]:With the continuous development of society, more and more knowledge has been grasped by human beings, especially after entering the 21st century, the amount of information presents an explosive growth, the speed is much faster than ever before. The existing storage technology is far from being able to meet the background of the Big Bang of knowledge. Therefore, the development and innovation of ultra-high density storage technology has become an inevitable requirement of the development of the times, especially the near-field optical storage, which has attracted the attention of many researchers for its advantages of breaking through the limit of diffraction. Firstly, the history of optical storage technology is briefly introduced, and the concept of diffraction limit, which limits the development of optical storage, is given. At present, the blue optical disc (laser is blue light) monolithic capacity can reach 27 GB. Due to the limitation of diffraction limit of light, the development potential of traditional far-field optical storage is very limited. The future development direction mainly includes the three-dimensional optical volume storage which can break through the optical disk plane limit and the near-field optical storage technology which can break through the diffraction resolution limit. This paper introduces the two storage technologies. Secondly, the basic concept of surface plasma is introduced. By expounding the discovery process of surface plasma and several modes of plasma in metal, we have a detailed understanding of the principle of electric field enhancement at the tip of cone tip in this paper. Then, several excitation methods of surface plasma polarizer are introduced briefly. Finally, by using the finite element method, the influence of the length of the cone tip and the angle between the incident light and the axis of the cone tip on the local enhancement of the electric field is analyzed in detail. The aim of the work is to find the optimum shape of the cone tip and make it reach the maximum of the electric field enhancement at the tip of the cone tip. In previous work, only the individual cone tip is studied, which can only reflect the optical response characteristics of cone tip enhancement to some extent. In practical application, the tapered tip also needs a series of supporting facilities, among which the influence of recording medium can not be ignored. This paper attempts to introduce the recording medium into the simulation calculation, and studies the influence of the dielectric constant of the recording medium on the electric field enhancement. These simulation results can be applied not only to ultra-high density optical storage, but also to the design and fabrication of sensors. Through a series of calculations, we obtain the optimal solution: when the incident wavelength is 632.8nm, the local electric field of Si _ 3N _ 4 is the largest when the length of the cone tip is 450nm and the angle between the incident light and the axis of the cone tip is 113C. The existence of recording medium makes the electric field enhancement of cone tip stronger, and the range of enhancement is more local, and the optical speckle is smaller, so smaller recording point can be obtained.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2013
【分類號(hào)】:TP333.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李鑫;潘石;邢立偉;;超高密度光存儲(chǔ)技術(shù)的進(jìn)展[J];電子顯微學(xué)報(bào);2007年01期
2 洪濤,王佳,李達(dá)成;近場(chǎng)光學(xué)在高密度存儲(chǔ)中的應(yīng)用[J];光學(xué)技術(shù);2001年03期
3 沈全洪,徐端頤,齊國(guó)生,張啟程,胡恒,宋潔;高密度藍(lán)光存儲(chǔ)及其擴(kuò)展技術(shù)[J];光學(xué)技術(shù);2005年06期
4 趙春梅,阮昊,何慧靈,趙曉峰,陳丹;非球面鏡在光學(xué)讀取頭中的應(yīng)用[J];激光與光電子學(xué)進(jìn)展;2004年10期
5 沈全洪;;超分辨率近場(chǎng)結(jié)構(gòu)(Super-RENS)光存儲(chǔ)技術(shù)研究進(jìn)展[J];記錄媒體技術(shù);2005年03期
6 丁冬艷,顧敏芬,梁忠誠(chéng);光存儲(chǔ)技術(shù)的進(jìn)展[J];金陵科技學(xué)院學(xué)報(bào);2004年04期
7 李軍;羅斌;郭弘;;光存儲(chǔ)與傳統(tǒng)磁存儲(chǔ)理論的比較研究[J];量子光學(xué)學(xué)報(bào);2008年01期
8 魏勁松,張約品,阮昊,干福熹;近場(chǎng)光存儲(chǔ)及其研究進(jìn)展[J];物理學(xué)進(jìn)展;2002年02期
9 金國(guó)藩,張培琨;超高密度光存儲(chǔ)技術(shù)的現(xiàn)狀和今后的發(fā)展[J];中國(guó)計(jì)量學(xué)院學(xué)報(bào);2001年02期
10 劉繼橋,劉之景,王克逸;近場(chǎng)光學(xué)高密度存儲(chǔ)研究進(jìn)展[J];自然雜志;2002年06期
相關(guān)碩士學(xué)位論文 前1條
1 李旭峰;金屬納米尖局域電磁場(chǎng)增強(qiáng)的數(shù)值模擬研究[D];大連理工大學(xué);2007年
,本文編號(hào):2019232
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2019232.html