基于MSP430單片機(jī)的測(cè)距系統(tǒng)
本文選題:測(cè)距系統(tǒng) + 放大電路; 參考:《河北工業(yè)大學(xué)》2012年碩士論文
【摘要】:液位測(cè)量技術(shù)在工業(yè)生產(chǎn)中占有重要的地位,隨著工業(yè)水平的不斷發(fā)展,測(cè)量技術(shù)逐漸由手動(dòng)變?yōu)樽詣?dòng),由傳統(tǒng)的不科學(xué)變?yōu)楦哂锌茖W(xué)性可依的測(cè)量方法。本文主要介紹測(cè)距系統(tǒng)的單片機(jī)控制模塊,4-20mA電流轉(zhuǎn)換模塊,電源模塊,太陽(yáng)能供電模塊,液晶顯示模塊,升壓電路模塊,三級(jí)放大電路模塊,溫度補(bǔ)償系統(tǒng)模塊,KALMAN算法數(shù)據(jù)處理等幾大關(guān)鍵核心模塊。 首先完成單片機(jī)控制模塊的設(shè)計(jì),,控制模塊主要負(fù)責(zé)計(jì)算測(cè)距系統(tǒng)到被測(cè)液面的距離。24V電源模塊是將輸入的24V電壓轉(zhuǎn)換成電路需要的電壓值。太陽(yáng)能供電模塊主要目的是解決偏遠(yuǎn)地區(qū)無(wú)法正常供電時(shí)的電池供電情況。液晶顯示模塊主要方便現(xiàn)場(chǎng)對(duì)液位測(cè)距系統(tǒng)參數(shù)的設(shè)置,及現(xiàn)場(chǎng)采集到的數(shù)值與中控室數(shù)據(jù)的對(duì)照。其次完成升壓模塊的電路設(shè)計(jì),將系統(tǒng)產(chǎn)生的電壓進(jìn)行大幅度的提升激勵(lì)探頭產(chǎn)生用于測(cè)量的超聲波,超聲波經(jīng)過(guò)被測(cè)液面后,返回的微弱波經(jīng)過(guò)三級(jí)放大電路放大還原后送入單片機(jī)做進(jìn)一步計(jì)算。在計(jì)算過(guò)程中使用溫度補(bǔ)償系統(tǒng)采集到的數(shù)值對(duì)數(shù)據(jù)進(jìn)行校正。最終使用Kalman算法對(duì)測(cè)量的數(shù)值進(jìn)行進(jìn)一步的精確分析,得出一個(gè)精度相對(duì)較高的液位高度值,通過(guò)4-20mA電流轉(zhuǎn)換模塊將高度數(shù)值轉(zhuǎn)化成電流值傳送至中控室進(jìn)行液位監(jiān)測(cè);诔暡ǖ臏y(cè)距系統(tǒng)的超聲波液位計(jì)具有成本低,技術(shù)要求不高,工作穩(wěn)定性強(qiáng),易于操作等幾個(gè)方面的特點(diǎn),被廣泛應(yīng)用于測(cè)量的各個(gè)領(lǐng)域。但其普遍存在受環(huán)境溫度影響大、精度不高幾個(gè)方面的缺點(diǎn)。因此研究帶自身校準(zhǔn)功能的超聲波液位計(jì)具有重要意義。 課題對(duì)超聲波液位計(jì)進(jìn)行理論分析,硬件結(jié)構(gòu)系統(tǒng)設(shè)計(jì),Kalman算法數(shù)據(jù)分析,整機(jī)調(diào)試,達(dá)到預(yù)期目標(biāo)。實(shí)現(xiàn)了對(duì)液位環(huán)境的低誤差測(cè)量,具有一定的使用價(jià)值。
[Abstract]:Liquid level measurement technology plays an important role in industrial production. With the continuous development of industrial level, the measurement technology is gradually changed from manual to automatic, from traditional unscientific to more scientific. This paper mainly introduces the SCM control module, 4-20mA current conversion module, power module, the sun. The power supply module, the LCD module, the boost circuit module, the three stage amplifier module, the temperature compensation system module, the KALMAN algorithm data processing and other key core modules.
First of all, the design of the MCU control module is completed. The control module is mainly responsible for calculating the distance between the distance measuring system and the measured level. The.24V power module is the voltage value that converts the input 24V voltage to the circuit. The main purpose of the solar power supply module is to solve the battery power supply when the remote area is unable to supply the normal power. The LCD module is the main purpose of the solar power supply module. It is mainly convenient to set up the parameters of the liquid level distance measuring system, and compare the data collected in the field with the data of the control room. Secondly, the circuit design of the lift module is completed, and the voltage generated by the system is greatly enhanced by the excitation probe for measuring ultrasonic wave. After the ultrasonic wave passes the measured surface, the return of the weak wave passes three. The level magnifying circuit is amplified and reduced to the single chip microcomputer for further calculation. In the process of calculation, the data collected by the temperature compensation system are corrected. Finally, the Kalman algorithm is used to further analyze the measured values, and a relatively high level of level of liquid level is obtained, and the 4-20mA current conversion module is used. The ultrasonic liquid level meter based on ultrasonic ranging system has the characteristics of low cost, low technical requirement, strong working stability, easy to operate and so on, which is widely used in various fields of measurement, but it is widely influenced by ambient temperature and fine. Therefore, it is of great significance to study the ultrasonic level gauge with its own calibration function.
In this paper, the theoretical analysis of the ultrasonic liquid level meter, the design of the hardware structure system, the data analysis of the Kalman algorithm, the whole machine debugging, have reached the expected goal, and the low error measurement for the liquid level environment has been realized, which has a certain value of use.
【學(xué)位授予單位】:河北工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TP274;TP368.12
【參考文獻(xiàn)】
相關(guān)期刊論文 前4條
1 唐長(zhǎng)文,何捷,菅洪彥,閔昊;精確的1.08GHz CMOS電感電容壓控振蕩器(英文)[J];半導(dǎo)體學(xué)報(bào);2005年05期
2 張順;;火電廠電除塵及除灰系統(tǒng)中的料位計(jì)選用[J];湖北電力;2011年02期
3 李俊杰;朱金武;;便攜式大容量太陽(yáng)能鋰離子電池充電器的設(shè)計(jì)[J];天津職業(yè)院校聯(lián)合學(xué)報(bào);2011年05期
4 趙斌;陳迪平;曾健平;劉文用;;低相位噪聲低功耗LC壓控振蕩器的設(shè)計(jì)[J];微計(jì)算機(jī)信息;2008年02期
相關(guān)碩士學(xué)位論文 前10條
1 楊升;智能電氣定位器的HART通訊接口開(kāi)發(fā)[D];杭州電子科技大學(xué);2011年
2 郟東耀;基于現(xiàn)場(chǎng)總線技術(shù)的瓦斯檢測(cè)及報(bào)警系統(tǒng)[D];鄭州大學(xué);2002年
3 崔志崗;基于HART協(xié)議的電磁流量計(jì)及手操器開(kāi)發(fā)[D];天津工業(yè)大學(xué);2006年
4 胡建勛;便攜式多功能互感器測(cè)量?jī)x的設(shè)計(jì)實(shí)現(xiàn)[D];華中科技大學(xué);2006年
5 賈仁敏;基于HART協(xié)議智能壓力變送器的研究[D];大連海事大學(xué);2008年
6 王磊;前置腔體輻射測(cè)溫的研究[D];北方工業(yè)大學(xué);2008年
7 貝天寶;新型鋰電池LED礦燈電控系統(tǒng)的研究[D];廣東工業(yè)大學(xué);2008年
8 武強(qiáng);wMPS測(cè)量系統(tǒng)模型建立與仿真分析[D];天津大學(xué);2008年
9 張凌華;基于MSP430單片機(jī)的氣體渦輪流量計(jì)設(shè)計(jì)[D];河北工業(yè)大學(xué);2008年
10 張凌志;基于MSP430單片機(jī)的便攜式動(dòng)態(tài)心電監(jiān)護(hù)儀研制[D];中南大學(xué);2009年
本文編號(hào):2004597
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/2004597.html