天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

高產(chǎn)熱密度數(shù)據(jù)機(jī)房冷卻技術(shù)研究

發(fā)布時(shí)間:2018-06-02 03:36

  本文選題:高產(chǎn)熱密度 + 數(shù)據(jù)機(jī)房。 參考:《清華大學(xué)》2012年博士論文


【摘要】:隨著信息產(chǎn)業(yè)的快速發(fā)展,全社會(huì)對(duì)各類(lèi)高性能數(shù)據(jù)機(jī)房的需求越來(lái)越大。以刀片式服務(wù)器為代表的高性能IT設(shè)備的廣泛應(yīng)用已經(jīng)使得標(biāo)準(zhǔn)42U機(jī)柜的容量從早年的不足1kW躍升到10~20kW,大型數(shù)據(jù)中心單位面積IT設(shè)備發(fā)熱量高達(dá)1~3kW,如此高的產(chǎn)熱密度使空調(diào)能耗大幅上升,目前已占機(jī)房總用電量的40%左右,不僅增加機(jī)房運(yùn)營(yíng)成本,制約機(jī)房升級(jí)擴(kuò)容,還直接影響著未來(lái)綠色數(shù)據(jù)機(jī)房的發(fā)展。如何有效降低機(jī)房空調(diào)能耗已成為亟待解決的問(wèn)題。基于此,本文從機(jī)房傳熱過(guò)程的本質(zhì)入手,從傳熱動(dòng)力損失角度重新審視和分析機(jī)房傳熱過(guò)程,開(kāi)展以下研究: 對(duì)機(jī)房傳熱過(guò)程本質(zhì)的研究。指出機(jī)房排熱的核心任務(wù)是在給定的散熱量和可用的傳熱動(dòng)力(機(jī)房室內(nèi)外溫差)下,通過(guò)減少各換熱環(huán)節(jié)的溫差消耗,用高溫冷源完成熱量從室內(nèi)到室外的搬運(yùn),并結(jié)合實(shí)測(cè)數(shù)據(jù)給出機(jī)房實(shí)際傳熱過(guò)程的的溫度分布,指出室內(nèi)冷熱空氣混合對(duì)機(jī)房傳熱性能有重要的影響。 對(duì)機(jī)房傳熱過(guò)程分析方法的研究。對(duì)于給定傳熱溫差求最大熱流的優(yōu)化問(wèn)題,分別用傳統(tǒng)熱力學(xué)方法(熵產(chǎn),火用損失)和熱學(xué)方法(火積耗散)分析,結(jié)果表明熱學(xué)原理(也稱(chēng)熱質(zhì)理論)適合研究機(jī)房傳熱過(guò)程,用火積耗散表征傳熱動(dòng)力損失,指出機(jī)房排熱的核心任務(wù)是減少傳熱火積損失,結(jié)合實(shí)測(cè)數(shù)據(jù)分析了機(jī)房傳熱過(guò)程中由溫差傳熱、冷熱流體混合、流量不匹配等因素引起的火積耗散,并分析了在不同工況下投入體系的壓縮功以及在不同結(jié)構(gòu)的換熱網(wǎng)絡(luò)中流體流量的變化對(duì)體系傳熱火積耗散的影響。 分布式冷卻技術(shù)研究;趥鳠峄鸱e損失最小原則提出機(jī)房分布式冷卻方案,通過(guò)與傳統(tǒng)集中式冷卻流程對(duì)比,指出分布式冷卻在消除冷熱空氣混合、改善傳熱過(guò)程匹配性、減少火積耗散以及改善機(jī)房熱環(huán)境、降低排熱能耗等方面的優(yōu)勢(shì),在此基礎(chǔ)上提出了內(nèi)置多級(jí)分離式熱管的內(nèi)冷型機(jī)柜以及冷卻塔與多級(jí)冷機(jī)串聯(lián)運(yùn)行的大溫差冷水系統(tǒng),,消除冷熱空氣混合;通過(guò)自然冷卻和機(jī)械制冷聯(lián)合運(yùn)行并連續(xù)調(diào)節(jié)供冷能力,有效延長(zhǎng)自然冷卻時(shí)間,提高機(jī)房排熱效率。 工程應(yīng)用。對(duì)北京市某數(shù)據(jù)機(jī)房空調(diào)系統(tǒng)節(jié)能改造,通過(guò)對(duì)全年不同工況下改造前后空調(diào)性能對(duì)比測(cè)試,采用分布式冷卻系統(tǒng)后,機(jī)房空調(diào)系統(tǒng)全年綜合能效從2.6提高到5.7,機(jī)房年均PUE值從1.6降低到1.35,證明了熱學(xué)原理和分布式冷卻技術(shù)在高產(chǎn)熱密度數(shù)據(jù)機(jī)房的適用性,為今后的推廣應(yīng)用積累了經(jīng)驗(yàn)。
[Abstract]:With the rapid development of information industry, the demand of all kinds of high-performance data rooms is increasing. The extensive application of high-performance IT equipment, represented by blade servers, has made the capacity of the standard 42U cabinet jump from insufficient 1kW in the early years to 102kW, and the heat output of IT equipment per unit area of large data center is as high as 1kW, so high as heat production. The density increases the energy consumption of air conditioning. At present, it accounts for about 40% of the total electricity consumption of the computer room, which not only increases the operating cost of the computer room, restricts the upgrading and expansion of the computer room, but also directly affects the development of the green data room in the future. How to reduce energy consumption effectively has become an urgent problem. Based on this, this paper starts with the nature of the heat transfer process in the computer room, and reexamines and analyzes the heat transfer process in the computer room from the point of view of heat transfer power loss, and carries out the following research: Study on the nature of heat transfer process in engine room. It is pointed out that the core task of heat discharge in computer room is to complete the heat transfer from indoor to outdoor by reducing the consumption of temperature difference in each heat exchange link under the given heat dissipation and available heat transfer power (room and outdoor temperature difference). Combined with the measured data, the temperature distribution of the actual heat transfer process in the computer room is given, and it is pointed out that the mixing of indoor cold and hot air has an important effect on the heat transfer performance of the engine room. The analysis method of heat transfer process in machine room is studied. For the optimization of the maximum heat flux for a given heat transfer temperature difference, the traditional thermodynamic method (entropy production, exergy loss) and the thermal method (exergy dissipation) are used to analyze the problem, respectively. The results show that the thermal principle (also called heat and mass theory) is suitable for the study of heat transfer process in computer room, and the heat transfer dynamic loss is characterized by fire accumulation dissipation. It is pointed out that the core task of heat transfer in engine room is to reduce the loss of heat transfer heat accumulation. Combined with the measured data, the fire accumulation and dissipation caused by temperature difference heat transfer, cold and hot fluid mixing, flow mismatch and other factors in the heat transfer process of the machine room are analyzed. The influence of the compression power of the system and the flow rate of the fluid in the heat transfer network under different working conditions on the heat transfer and dissipation of the heat transfer system is analyzed. Research on distributed cooling Technology. Based on the principle of minimum loss of heat transfer product, a distributed cooling scheme for machine room is proposed. By comparing with the traditional centralized cooling process, it is pointed out that distributed cooling can eliminate the mixing of cold and hot air and improve the matching of heat transfer process. On the basis of the advantages of reducing fire deposition and dissipation, improving the thermal environment of the machine room and reducing the energy consumption of heat exhaust, the inner cooling cabinet with built-in multi-stage separate heat pipe and the large temperature difference cooling water system running in series between the cooling tower and the multi-stage cooler are put forward. It can effectively prolong the natural cooling time and improve the heat discharge efficiency of the engine room by the combination of natural cooling and mechanical refrigeration and continuous adjustment of cooling capacity. Engineering application. Through the comparison and test of air conditioning performance before and after retrofitting in a data room in Beijing, after adopting distributed cooling system, The comprehensive energy efficiency of the air-conditioning system in the engine room is improved from 2.6 to 5.7, and the average annual PUE value of the engine room is reduced from 1.6 to 1.35, which proves the applicability of the thermal theory and the distributed cooling technology in the high-yield heat density data room, and accumulates the experience for the future popularization and application.
【學(xué)位授予單位】:清華大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2012
【分類(lèi)號(hào)】:TU83;TP308

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 祝健,張勇;電子計(jì)算機(jī)機(jī)房空調(diào)設(shè)計(jì)實(shí)現(xiàn)方法[J];安徽建筑;2001年01期

2 孫研;;通信機(jī)房節(jié)能綜合解決方案[J];電信工程技術(shù)與標(biāo)準(zhǔn)化;2006年06期

3 郝瑩;臧潤(rùn)清;王洪旭;;機(jī)房空調(diào)在變環(huán)境溫度下的數(shù)值模擬與實(shí)驗(yàn)研究[J];低溫與超導(dǎo);2010年01期

4 侯福平;;通信機(jī)房空調(diào)系統(tǒng)節(jié)能技術(shù)探討[J];電信技術(shù);2006年06期

5 尹樹(shù)峰;;中小通信機(jī)房通風(fēng)降溫節(jié)能改造實(shí)踐探索[J];電信技術(shù);2008年08期

6 李森;;通風(fēng)節(jié)能系統(tǒng)在電信機(jī)房中的應(yīng)用[J];電信技術(shù);2008年08期

7 白波;;新型節(jié)能降耗機(jī)柜系統(tǒng)NetAccess[J];低壓電器;2008年02期

8 呂愛(ài)華;梅勝;楊晚生;;數(shù)據(jù)通信機(jī)房空調(diào)通風(fēng)系統(tǒng)的實(shí)驗(yàn)測(cè)試分析[J];建筑節(jié)能;2010年02期

9 陳沂;張宇峰;孟慶林;;通信基站通風(fēng)冷卻技術(shù)的聯(lián)動(dòng)控制策略研究[J];福州大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年03期

10 程新廣,孟繼安,過(guò)增元;導(dǎo)熱優(yōu)化中的最小傳遞勢(shì)容耗散與最小熵產(chǎn)[J];工程熱物理學(xué)報(bào);2005年06期



本文編號(hào):1967195

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1967195.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶(hù)f974c***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com