MapReduce環(huán)境下的性能異常檢測和資源調(diào)度方法
發(fā)布時間:2018-05-28 10:03
本文選題:云計算 + MapReduce。 參考:《北京郵電大學(xué)》2013年碩士論文
【摘要】:MapReduce是由Google提出的一個廣為人知的編程框架,Hadoop開源實(shí)現(xiàn)了這一框架。因?yàn)镸apReduce適合處理大規(guī)模數(shù)據(jù),許多企業(yè)都采用其進(jìn)行數(shù)據(jù)挖掘,數(shù)據(jù)存儲等。MapReduce需要一個調(diào)度策略來決定工作如何執(zhí)行以及工作執(zhí)行過程中的資源分配,目前許多調(diào)度策略主要是為了提高集群資源利用率,而沒有充分考慮一個工作對于完成時間的要求。此外,MapReduce是一個架構(gòu)在廉價設(shè)備上的十分復(fù)雜的系統(tǒng),經(jīng)常會有異常發(fā)生,能否及時檢測到系統(tǒng)的異常并進(jìn)行處理對于系統(tǒng)的正常高效運(yùn)行十分重要。 本文針對以上的兩點(diǎn)問題進(jìn)行了研究: 1)針對資源調(diào)度問題,本文提出了一種調(diào)度機(jī)制以保證集群中運(yùn)行的每個工作都能夠按時完成,從而達(dá)到其性能要求。和其他的調(diào)度策略相比,本文的方法能夠預(yù)測一個工作的運(yùn)行狀況,并根據(jù)預(yù)測結(jié)果合理地分配資源給每個工作,以盡量避免不必要的資源浪費(fèi)。調(diào)度策略在一個仿真環(huán)境中進(jìn)行了評估,結(jié)果表明本文的方法能夠保證工作在其預(yù)期時間內(nèi)完成并能夠節(jié)省資源。 2)針對異常檢測問題,本文提出并分析了一種MapReduce環(huán)境下的異常檢測方法。該方法基于相似節(jié)點(diǎn)理論,通過運(yùn)用密度聚類的方法實(shí)時分析系統(tǒng)的性能指標(biāo)來檢測異常。本文還對相似節(jié)點(diǎn)理論和異常檢測算法進(jìn)行了實(shí)驗(yàn)驗(yàn)證。和現(xiàn)有的其他方法相比,本文提出的方法具有處理過程簡單、算法復(fù)雜度低、檢測靈敏度高且適于在線和離線檢測的優(yōu)點(diǎn)。
[Abstract]:MapReduce is a well-known programming framework proposed by Google. Because MapReduce is suitable for large-scale data processing, many enterprises use it for data mining, data storage, and so on. MapReduce requires a scheduling strategy to determine how work is performed and how resources are allocated during work execution. At present, many scheduling strategies are mainly aimed at improving the utilization of cluster resources, without fully considering the completion time requirement of a single task. In addition, MapReduce is a very complex system based on cheap devices, and there are often exceptions. It is very important to detect and deal with the anomalies in time for the normal and efficient operation of the system. In this paper, the above two problems are studied: 1) aiming at the resource scheduling problem, this paper proposes a scheduling mechanism to ensure that every task running in the cluster can be completed on time, so as to meet its performance requirements. Compared with other scheduling strategies, the proposed method can predict the running status of a job and allocate resources to each task reasonably according to the prediction results, so as to avoid unnecessary waste of resources as far as possible. The scheduling policy is evaluated in a simulation environment. The results show that the proposed method can ensure that the work is completed within the expected time and can save resources. 2) aiming at the problem of anomaly detection, an anomaly detection method in MapReduce environment is proposed and analyzed. This method is based on the theory of similar nodes and detects anomalies by using density clustering method to analyze the performance of the system in real time. The theory of similar nodes and the algorithm of anomaly detection are also verified experimentally in this paper. Compared with other existing methods, the proposed method has the advantages of simple processing, low algorithm complexity, high detection sensitivity and suitable for on-line and off-line detection.
【學(xué)位授予單位】:北京郵電大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2013
【分類號】:TP338.6
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 岳侖,杜新華,張華;特征檢測與異常檢測相結(jié)合的入侵檢測模型[J];通信技術(shù);2003年11期
2 吉治鋼,蔡利棟;基于Fuzzy ART神經(jīng)網(wǎng)絡(luò)的Linux進(jìn)程行為異常檢測[J];計算機(jī)工程;2005年03期
3 李戰(zhàn)春;李之棠;黎耀;;基于相關(guān)特征矩陣和神經(jīng)網(wǎng)絡(luò)的異常檢測研究[J];計算機(jī)工程與應(yīng)用;2006年07期
4 盧艷軍;蔡國浩;張靖;;廣域網(wǎng)入侵異常檢測技術(shù)實(shí)現(xiàn)[J];中國新通信;2006年19期
5 張兆莉;蔡永泉;史曉龍;;一種用于異常檢測的系統(tǒng)調(diào)用參數(shù)及序列分析算法[J];微計算機(jī)信息;2006年33期
6 陳競;苗茹;;入侵檢測系統(tǒng)研究[J];電腦知識與技術(shù)(學(xué)術(shù)交流);2007年13期
7 劉星星;;基于數(shù)據(jù)流特征的網(wǎng)絡(luò)擁塞控制與異常檢測研究[J];電腦與電信;2007年10期
8 李閏平;李斌;王W,
本文編號:1946282
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1946282.html
最近更新
教材專著