云存儲環(huán)境下副本選擇策略研究
本文選題:云存儲 + 異構(gòu)性; 參考:《計算機科學(xué)》2015年S2期
【摘要】:云存儲服務(wù)提供商為了滿足各類云用戶的存儲需求,一般采用劃分固定大小的數(shù)據(jù)塊、冗余備份等技術(shù)來存儲數(shù)據(jù),關(guān)于塊放置、最佳副本選擇、副本粒度等存儲機制的研究一直是加快大文件存取速度的重要內(nèi)容。面向云存儲系統(tǒng)中存儲節(jié)點的異構(gòu)性,設(shè)計了一種采用層次分析法對節(jié)點性能指標加權(quán)并依據(jù)加權(quán)指標改進粒子群算法的策略(AHPPSO)。通過引入與存儲節(jié)點性能相關(guān)的加權(quán)評價矩陣,使得粒子群算法向綜合性能較高的節(jié)點進化,在不增加存儲空間成本的基礎(chǔ)上,加快了存取數(shù)據(jù)的速度。在自主搭建的云存儲系統(tǒng)中實現(xiàn)了該策略,實驗結(jié)果顯示該策略能夠適應(yīng)多種用戶需求,并且在一定程度上實現(xiàn)系統(tǒng)負載均衡。
[Abstract]:In order to meet the storage needs of all kinds of cloud users, cloud storage service providers generally use fixed size data blocks, redundant backup and other technologies to store data. The research of storage mechanism such as replica granularity has been an important content in speeding up the speed of large file access. Aiming at the heterogeneity of storage nodes in cloud storage system, a new strategy of particle swarm optimization (PSO), which uses AHP to weight node performance index and improves particle swarm optimization algorithm (PSO), is proposed. By introducing a weighted evaluation matrix related to the performance of storage nodes, PSO evolves to nodes with high synthesis performance, which accelerates the speed of accessing data without increasing the cost of storage space. The strategy is implemented in the self-built cloud storage system. The experimental results show that the strategy can meet the needs of various users and achieve system load balance to a certain extent.
【作者單位】: 沈陽航空航天大學(xué)計算機學(xué)院;
【基金】:遼寧省教育廳科學(xué)基金(L2013064) 中航工業(yè)技術(shù)創(chuàng)新基金(基礎(chǔ)研究類)(2013S60109R)資助
【分類號】:TP333
【相似文獻】
相關(guān)期刊論文 前10條
1 秦玉靈;孔憲仁;羅文波;;混沌量子粒子群算法在模型修正中的應(yīng)用[J];計算機工程與應(yīng)用;2010年02期
2 陳治明;;新型量子粒子群算法及其性能分析研究[J];福建電腦;2010年05期
3 牛永潔;;一種新型的混合粒子群算法[J];信息技術(shù);2010年10期
4 全芙蓉;;粒子群算法的理論分析與研究[J];硅谷;2010年23期
5 劉衍民;趙慶禎;邵增珍;;一種改進的完全信息粒子群算法研究[J];曲阜師范大學(xué)學(xué)報(自然科學(xué)版);2011年01期
6 朱童;李小凡;魯明文;;位置加權(quán)的改進粒子群算法[J];計算機工程與應(yīng)用;2011年05期
7 熊智挺;譚陽紅;易如方;陳賽華;;一種并行的自適應(yīng)量子粒子群算法[J];計算機系統(tǒng)應(yīng)用;2011年08期
8 孟純青;;非線性粒子群算法[J];微計算機應(yīng)用;2011年08期
9 任偉建;武璇;;一種動態(tài)改變學(xué)習(xí)因子的簡化粒子群算法[J];自動化技術(shù)與應(yīng)用;2012年10期
10 劉飛,孫明,李寧,孫德寶,鄒彤;粒子群算法及其在布局優(yōu)化中的應(yīng)用[J];計算機工程與應(yīng)用;2004年12期
相關(guān)會議論文 前10條
1 朱童;李小凡;魯明文;;位置加權(quán)的改進粒子群算法[A];中國科學(xué)院地質(zhì)與地球物理研究所第11屆(2011年度)學(xué)術(shù)年會論文集(上)[C];2012年
2 陳定;何炳發(fā);;一種新的二進制粒子群算法在稀疏陣列綜合中的應(yīng)用[A];2009年全國天線年會論文集(上)[C];2009年
3 陳龍祥;蔡國平;;基于粒子群算法的時滯動力學(xué)系統(tǒng)的時滯辨識[A];第十二屆全國非線性振動暨第九屆全國非線性動力學(xué)和運動穩(wěn)定性學(xué)術(shù)會議論文集[C];2009年
4 于穎;李永生;於孝春;;新型離散粒子群算法在波紋管優(yōu)化設(shè)計中的應(yīng)用[A];第十一屆全國膨脹節(jié)學(xué)術(shù)會議膨脹節(jié)設(shè)計、制造和應(yīng)用技術(shù)論文選集[C];2010年
5 劉卓倩;顧幸生;;一種基于信息熵的改進粒子群算法[A];系統(tǒng)仿真技術(shù)及其應(yīng)用(第7卷)——'2005系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會論文選編[C];2005年
6 熊偉麗;徐保國;;粒子群算法在支持向量機參數(shù)選擇優(yōu)化中的應(yīng)用研究[A];2007中國控制與決策學(xué)術(shù)年會論文集[C];2007年
7 方衛(wèi)華;徐蘭玉;陳允平;;改進粒子群算法在大壩力學(xué)參數(shù)分區(qū)反演中的應(yīng)用[A];2012年中國水力發(fā)電工程學(xué)會大壩安全監(jiān)測專委會年會暨學(xué)術(shù)交流會論文集[C];2012年
8 熊偉麗;徐保國;;單個粒子收斂中心隨機攝動的粒子群算法[A];2009年中國智能自動化會議論文集(第七分冊)[南京理工大學(xué)學(xué)報(增刊)][C];2009年
9 馬向陽;陳琦;;以粒子群算法求解買賣雙方存貨主從對策[A];第十二屆中國管理科學(xué)學(xué)術(shù)年會論文集[C];2010年
10 趙磊;;基于粒子群算法求解多目標函數(shù)優(yōu)化問題[A];第二十一屆中國(天津)’2007IT、網(wǎng)絡(luò)、信息技術(shù)、電子、儀器儀表創(chuàng)新學(xué)術(shù)會議論文集[C];2007年
相關(guān)博士學(xué)位論文 前10條
1 王芳;粒子群算法的研究[D];西南大學(xué);2006年
2 安鎮(zhèn)宙;家庭粒子群算法及其奇偶性與收斂性分析[D];云南大學(xué);2012年
3 劉建華;粒子群算法的基本理論及其改進研究[D];中南大學(xué);2009年
4 黃平;粒子群算法改進及其在電力系統(tǒng)的應(yīng)用[D];華南理工大學(xué);2012年
5 胡成玉;面向動態(tài)環(huán)境的粒子群算法研究[D];華中科技大學(xué);2010年
6 張靜;基于混合離散粒子群算法的柔性作業(yè)車間調(diào)度問題研究[D];浙江工業(yè)大學(xué);2014年
7 張寶;粒子群算法及其在衛(wèi)星艙布局中的應(yīng)用研究[D];大連理工大學(xué);2007年
8 劉宏達;粒子群算法的研究及其在船舶工程中的應(yīng)用[D];哈爾濱工程大學(xué);2008年
9 楊輕云;約束滿足問題與調(diào)度問題中離散粒子群算法研究[D];吉林大學(xué);2006年
10 馮琳;改進多目標粒子群算法的研究及其在電弧爐供電曲線優(yōu)化中的應(yīng)用[D];東北大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 張忠偉;結(jié)構(gòu)優(yōu)化中粒子群算法的研究與應(yīng)用[D];大連理工大學(xué);2009年
2 李強;基于改進粒子群算法的艾薩爐配料優(yōu)化[D];昆明理工大學(xué);2015年
3 付曉艷;基于粒子群算法的自調(diào)節(jié)隸屬函數(shù)模糊控制器設(shè)計[D];河北聯(lián)合大學(xué);2014年
4 余漢森;粒子群算法的自適應(yīng)變異研究[D];南京信息工程大學(xué);2015年
5 梁計鋒;基于改進粒子群算法的交通控制算法研究[D];長安大學(xué);2015年
6 楊偉;基于粒子群算法的氧樂果合成過程建模研究[D];鄭州大學(xué);2015年
7 李程;基于粒子群算法的AS/RS優(yōu)化調(diào)度方法研究[D];陜西科技大學(xué);2015年
8 樊偉健;基于混合混沌粒子群算法求解變循環(huán)發(fā)動機數(shù)學(xué)模型問題[D];山東大學(xué);2015年
9 陳百霞;考慮風(fēng)電場并網(wǎng)的電力系統(tǒng)無功優(yōu)化[D];山東大學(xué);2015年
10 戴玉倩;基于混合動態(tài)粒子群算法的軟件測試數(shù)據(jù)自動生成研究[D];江西理工大學(xué);2015年
,本文編號:1921559
本文鏈接:http://sikaile.net/kejilunwen/jisuanjikexuelunwen/1921559.html